
Alfred-Workflow Documentation
Release 1.13

Dean Jackson <deanishe@deanishe.net>

September 28, 2015

Contents

1 Features 3

2 Quick example 5

3 Installation 7
3.1 Installation . 7

4 The Alfred-Workflow Tutorial 9
4.1 Tutorial . 9

5 User Manual 43
5.1 User Manual . 43

6 API documentation 67
6.1 Alfred-Workflow API . 67

7 Script Filter results and the XML format 85
7.1 Script Filter Results and the XML Format . 85

8 Workflows using Alfred-Workflow 93
8.1 Workflows using Alfred-Workflow . 93

9 Feedback, questions, bugs, feature requests 97

Python Module Index 99

i

ii

Alfred-Workflow Documentation, Release 1.13

Alfred-Workflow is a Python helper library for Alfred 2 workflow authors, developed and hosted on GitHub.

Alfred workflows typically take user input, fetch data from the Web or elsewhere, filter them and display results
to the user. Alfred-Workflow takes care of a lot of the details for you, allowing you to concentrate your efforts on
your workflow’s functionality.

Alfred-Workflow supports OS X 10.6+ (Python 2.6 and 2.7)

Contents 1

http://www.alfredapp.com/
https://github.com/deanishe/alfred-workflow/

Alfred-Workflow Documentation, Release 1.13

2 Contents

CHAPTER 1

Features

• Catches and logs workflow errors for easier development and support

• “Magic” arguments to help development, debugging and management of the workflow

• Auto-saves settings

• Super-simple data caching

• Fuzzy, Alfred-like search/filtering with diacritic folding

• Keychain support for secure storage (and syncing) of passwords, API keys etc.

• Simple generation of Alfred feedback (XML output)

• Input/output decoding for handling non-ASCII text

• Lightweight web API with Requests-like interface

• Pre-configured logging

• Painlessly add directories to sys.path

• Easily launch background tasks (daemons) to keep your workflow responsive

• Check for and install new workflow versions using GitHub releases.

3

http://docs.python-requests.org/en/latest/

Alfred-Workflow Documentation, Release 1.13

4 Chapter 1. Features

CHAPTER 2

Quick example

Here’s how to show recent Pinboard.in posts in Alfred.

Create a new workflow in Alfred’s preferences. Add a Script Filter with Language /usr/bin/python and
paste the following into the Script field (changing API_KEY):

1 import sys
2 from workflow import Workflow, ICON_WEB, web
3

4 API_KEY = 'your-pinboard-api-key'
5

6 def main(wf):
7 url = 'https://api.pinboard.in/v1/posts/recent'
8 params = dict(auth_token=API_KEY, count=20, format='json')
9 r = web.get(url, params)

10 r.raise_for_status()
11 for post in r.json()['posts']:
12 wf.add_item(post['description'], post['href'], arg=post['href'],
13 uid=post['hash'], valid=True, icon=ICON_WEB)
14 wf.send_feedback()
15

16

17 if __name__ == u"__main__":
18 wf = Workflow()
19 sys.exit(wf.run(main))

Add an Open URL action to your workflow with {query} as the URL, connect your Script Filter to it, and
you can now hit ENTER on a Pinboard item in Alfred to open it in your browser.

Warning: Using the above example code as a workflow will likely get you banned by the Pinboard API. See
the Tutorial if you want to build an API terms-compliant (and super-fast) Pinboard workflow.

5

https://pinboard.in/

Alfred-Workflow Documentation, Release 1.13

6 Chapter 2. Quick example

CHAPTER 3

Installation

Alfred-Workflow can be installed from the Python Package Index with pip or from the source on GitHub.

3.1 Installation

Alfred-Workflow can be installed from the Python Package Index with pip or from the source code on GitHub.

3.1.1 pip / PyPi

You can install Alfred-Workflow directly into your workflow with:

pip install --target=/path/to/my/workflow Alfred-Workflow

Important: If you intend to distribute your workflow to other users, you should include Alfred-Workflow (and
other non-standard Python libraries your workflow requires) within your workflow as described above. Do not
ask users to install anything into their system Python. That way lies broken software.

3.1.2 GitHub

Download the alfred-workflow-X.X.X.zip file from the GitHub releases page and either extract the ZIP
to the root directory of your workflow (where info.plist is) or place the ZIP in the root directory and add
sys.path.insert(0, ’alfred-workflow-X.X.X.zip’) to the top of your Python scripts.

Important: background and update will not work if you are importing Alfred-Workflow from a zip file.

If you need to use background or the self-updating functionality, you must extract the zip archive.

Alternatively, you can download the source code from the GitHub repository and copy the workflow subfolder
to the root directory of your workflow.

Your Workflow directory should look something like this (where yourscript.py contains your workflow code
and info.plist is the workflow information file generated by Alfred):

Your Workflow/
info.plist
icon.png
workflow/

__init__.py
background.py
update.py
version
workflow.py

7

https://pypi.python.org/pypi/Alfred-Workflow
https://pypi.python.org/pypi/pip
https://github.com/deanishe/alfred-workflow/
https://pypi.python.org/pypi/Alfred-Workflow
https://pypi.python.org/pypi/pip
https://github.com/deanishe/alfred-workflow/releases
https://github.com/deanishe/alfred-workflow/releases
https://github.com/deanishe/alfred-workflow/archive/master.zip
https://github.com/deanishe/alfred-workflow

Alfred-Workflow Documentation, Release 1.13

web.py
yourscript.py
etc.

Or like this:

Your Workflow/
info.plist
icon.png
workflow-1.X.X.zip
yourscript.py
etc.

8 Chapter 3. Installation

CHAPTER 4

The Alfred-Workflow Tutorial

A two-part tutorial on writing an Alfred workflow with Alfred-Workflow, taking you through the basics to a
performant and release- ready workflow. This is the best starting point for workflow authors new to Python or
programming in general. More experienced Python coders should skim this or skip straight ahead to the User
Manual.

4.1 Tutorial

This is a two-part tutorial on writing an Alfred 2 workflow with Alfred-Workflow, taking you through the basics
to a full-featured workflow ready to share with the world.

4.1.1 Part 1: A Basic Pinboard Workflow

In which we build an Alfred workflow to view recent posts to Pinboard.

If you’re new to Alfred and/or coding in general, start here.

Part 1: A Basic Pinboard Workflow

In which we build an Alfred workflow to view recent posts to Pinboard.in.

Note: To use workflows, you must own Alfred’s Powerpack.

Creating a new Workflow

First, create a new, blank workflow in Alfred 2’s Preferences, under the Workflows tab:

9

https://pinboard.in/
https://pinboard.in/
https://buy.alfredapp.com/

Alfred-Workflow Documentation, Release 1.13

Describing your Workflow

When the info dialog pops up, give your workflow a name, a Bundle Id, and possibly a description.

Important: The Bundle Id is essential: it’s the unique name used by Alfred and Alfred-Workflow internally to
identify your workflow. Alfred-Workflow won’t work without it.

You can also drag an image to the icon field to the left to make your workflow pretty (Alfred will use this icon to
show your workflow actions in its action list). I grabbed a free Pinboard icon.

10 Chapter 4. The Alfred-Workflow Tutorial

http://www.iconarchive.com/show/simple-icons-by-danleech/pinboard-icon.html

Alfred-Workflow Documentation, Release 1.13

Adding a Script Filter

The next step is to add a Script Filter. Script Filters receive input from Alfred (the query entered by the user) and
send results back to Alfred. They should run as quickly as possible because Alfred will try to call the Script Filter
for every character typed into its query box:

And enter the details for this action (the Escaping options don’t matter at the moment because our script currently
doesn’t accept a query):

Choose a Keyword, which you will enter in Alfred to activate your workflow. At the moment, our Script Filter
won’t take any arguments, so choose No Argument. The Placeholder Title and Subtext are what Alfred will
show when you type the Keyword:

4.1. Tutorial 11

Alfred-Workflow Documentation, Release 1.13

The “Please Wait” Subtext is what is shown when your workflow is working, which in our case means fetching
data from pinboard.in.

Very importantly, set the Language to /bin/bash. The Script field should contain:

python pinboard.py

We’re going to create the pinboard.py script in a second. The Escaping options don’t matter for now because
our Script Filter doesn’t accept an argument.

Note: You can choose /usr/bin/python as the Language and paste your Python code into the Script box,
but this isn’t the best idea.

If you do this, you can’t run the script from the Terminal (which can be helpful when developing/debugging), and
you can’t as easily use a proper code editor, which makes debugging difficult: Python always tells you which line
an error occurred on, but the Script field doesn’t show line numbers, so lots of counting is involved.

Now Alfred has created the workflow, we can open it up and add our script. Right-click on your workflow in the
list on the left and choose Show in Finder.

The directory will show one or two files (depending on whether or not you chose an icon):

12 Chapter 4. The Alfred-Workflow Tutorial

Alfred-Workflow Documentation, Release 1.13

At this point, download the latest release of Alfred-Workflow from GitHub, extract it and copy the workflow
directory into your workflow’s directory:

Now we can start coding.

Writing your Python script

Using your text editor of choice 1, create a new text file and save it in your workflow directory as pinboard.py
(the name we used when setting up the Script Filter).

Add the following code to pinboard.py (be sure to change API_KEY to your pinboard API key. You can find
it on the settings/password page):

1 Do not use TextEdit to edit code. By default it uses “smart” quotes, which will break code. If you have OS X 10.7 or later, TextMate is
an excellent and free editor. TextWrangler is another good, free editor for OS X (supports 10.6).

4.1. Tutorial 13

https://github.com/deanishe/alfred-workflow/releases/latest
https://pinboard.in/settings/password
https://github.com/textmate/textmate/releases
http://www.barebones.com/products/textwrangler/

Alfred-Workflow Documentation, Release 1.13

1 # encoding: utf-8
2

3 import sys
4 from workflow import Workflow, ICON_WEB, web
5

6 API_KEY = 'your-pinboard-api-key'
7

8

9 def main(wf):
10 url = 'https://api.pinboard.in/v1/posts/recent'
11 params = dict(auth_token=API_KEY, count=20, format='json')
12 r = web.get(url, params)
13

14 # throw an error if request failed
15 # Workflow will catch this and show it to the user
16 r.raise_for_status()
17

18 # Parse the JSON returned by pinboard and extract the posts
19 result = r.json()
20 posts = result['posts']
21

22 # Loop through the returned posts and add an item for each to
23 # the list of results for Alfred
24 for post in posts:
25 wf.add_item(title=post['description'],
26 subtitle=post['href'],
27 icon=ICON_WEB)
28

29 # Send the results to Alfred as XML
30 wf.send_feedback()
31

32

33 if __name__ == u"__main__":
34 wf = Workflow()
35 sys.exit(wf.run(main))

All being well, our workflow should now work. Fire up Alfred, enter your keyword and hit ENTER. You should
see something like this:

14 Chapter 4. The Alfred-Workflow Tutorial

Alfred-Workflow Documentation, Release 1.13

If something went wrong (e.g. an incorrect API key, as in the screenshot), you should see an error like this:

If Alfred shows nothing at all, it probably couldn’t run your Python script at all. You’ll have to open the workflow
directory in Terminal and run the script by hand to see the error:

python pinboard.py

Adding workflow actions

So now we can see a list of recent posts in Alfred, but can’t do anything with them. We’re going to change that
and make the items “actionable” (i.e. you can hit ENTER on them and something happens, in this case, the page
will be opened in your browser).

Add the highlighted lines (27–28) to your pinboard.py file:

1 # encoding: utf-8
2

3 import sys
4 from workflow import Workflow, ICON_WEB, web

4.1. Tutorial 15

http://www.youtube.com/watch?v=xsCCgITrrWI
http://www.youtube.com/watch?v=xsCCgITrrWI

Alfred-Workflow Documentation, Release 1.13

5

6 API_KEY = 'your-pinboard-api-key'
7

8

9 def main(wf):
10 url = 'https://api.pinboard.in/v1/posts/recent'
11 params = dict(auth_token=API_KEY, count=20, format='json')
12 r = web.get(url, params)
13

14 # throw an error if request failed
15 # Workflow will catch this and show it to the user
16 r.raise_for_status()
17

18 # Parse the JSON returned by pinboard and extract the posts
19 result = r.json()
20 posts = result['posts']
21

22 # Loop through the returned posts and add an item for each to
23 # the list of results for Alfred
24 for post in posts:
25 wf.add_item(title=post['description'],
26 subtitle=post['href'],
27 arg=post['href'],
28 valid=True,
29 icon=ICON_WEB)
30

31 # Send the results to Alfred as XML
32 wf.send_feedback()
33

34

35 if __name__ == u"__main__":
36 wf = Workflow()
37 sys.exit(wf.run(main))

valid=True tells Alfred that the item is actionable and arg is the value it will pass to the next action (in this
case a URL).

Go back to Alfred’s Preferences and add an Open URL action:

Then enter {query} as the URL:

16 Chapter 4. The Alfred-Workflow Tutorial

Alfred-Workflow Documentation, Release 1.13

When you hover your mouse over the Script Filter, you’ll notice a small “nub” appears on the right-hand side:

Click and hold on this, and drag a connection to the Open URL action:

4.1. Tutorial 17

Alfred-Workflow Documentation, Release 1.13

Now run your workflow again in Alfred, select one of the results and hit ENTER. The post’s webpage should
open in your default browser.

Improving performance and not getting banned

The terms of use of the Pinboard API specifically limit calls to the recent posts method to 1 call/minute. As it’s
likely you’ll call your workflow more often than that, we need to cache the results from the API and use the cached
data for at least a minute. Alfred-Workflow makes this a doddle with its cached_data() method.

Go back to pinboard.py and make the following changes:

1 # encoding: utf-8
2

3 import sys
4 from workflow import Workflow, ICON_WEB, web
5

6 API_KEY = 'your-pinboard-api-key'
7

8

9 def get_recent_posts():
10 """Retrieve recent posts from Pinboard.in
11

12 Returns a list of post dictionaries.
13

14 """
15 url = 'https://api.pinboard.in/v1/posts/recent'
16 params = dict(auth_token=API_KEY, count=20, format='json')
17 r = web.get(url, params)
18

19 # throw an error if request failed
20 # Workflow will catch this and show it to the user
21 r.raise_for_status()
22

23 # Parse the JSON returned by pinboard and extract the posts
24 result = r.json()
25 posts = result['posts']
26 return posts

18 Chapter 4. The Alfred-Workflow Tutorial

https://pinboard.in/api#limits

Alfred-Workflow Documentation, Release 1.13

27

28

29 def main(wf):
30

31 # Retrieve posts from cache if available and no more than 60
32 # seconds old
33 posts = wf.cached_data('posts', get_recent_posts, max_age=60)
34

35 # Loop through the returned posts and add an item for each to
36 # the list of results for Alfred
37 for post in posts:
38 wf.add_item(title=post['description'],
39 subtitle=post['href'],
40 arg=post['href'],
41 valid=True,
42 icon=ICON_WEB)
43

44 # Send the results to Alfred as XML
45 wf.send_feedback()

We’ve moved the code that retrieves the data from the API to a separate function (get_recent_posts(), line
9) and instead we ask Workflow.cached_data() (line 33) for the data cached under the name posts
(the first argument). cached_data() will first check its cache for data saved under posts and return
those data if they’re less than max_age seconds old. If the data are older or don’t exist, it will call the
get_recent_posts() function passed as the second parameter, cache the data returned by that function
under the name posts and return it.

So now we won’t get banned by Pinboard for hammering the API, and as a bonus, the workflow is now blazingly
fast when the data are in its cache. For this reason, it’s probably a good idea to increase max_age to 300 or
600 seconds (5 or 10 minutes) or even more—depending on how often you add new posts to Pinboard—to get
super-fast results more often.

Making the posts searchable

What if you’re looking for a specific post? Who’s got time to scroll through a list of 20 results? Let’s make them
searchable.

First, update the Script Filter settings. Next to Keyword, change No Argument to Argument Optional and select
with space. with space means that when you hit ENTER or TAB on your workflow action, Alfred will add a
space after it, so you can start typing your query immediately. Then add "{query}" in the Script text field.
{query} will be replaced by Alfred with whatever you’ve typed after the keyword. Finally, set the Escaping
options to:

• Backquotes

• Double Quotes

• Dollars

• Backslashes

and nothing else. This ensures that the query reaches your Python script unmolested by bash. Your Script Filter
settings should now look like this:

4.1. Tutorial 19

Alfred-Workflow Documentation, Release 1.13

First, we’ll set the script to get 100 recent posts from Pinboard (the maximum allowed) in line 16 and to cache
them for 10 minutes in line 33 (or use 300 seconds for 5 minutes if you’re a heavy Pinboardista):

1 # encoding: utf-8
2

3 import sys
4 from workflow import Workflow, ICON_WEB, web
5

6 API_KEY = 'your-pinboard-api-key'
7

8

9 def get_recent_posts():
10 """Retrieve recent posts from Pinboard.in
11

12 Returns a list of post dictionaries.
13

14 """
15 url = 'https://api.pinboard.in/v1/posts/recent'
16 params = dict(auth_token=API_KEY, count=100, format='json')
17 r = web.get(url, params)
18

19 # throw an error if request failed

20 Chapter 4. The Alfred-Workflow Tutorial

Alfred-Workflow Documentation, Release 1.13

20 # Workflow will catch this and show it to the user
21 r.raise_for_status()
22

23 # Parse the JSON returned by pinboard and extract the posts
24 result = r.json()
25 posts = result['posts']
26 return posts
27

28

29 def main(wf):
30

31 # Retrieve posts from cache if available and no more than 600
32 # seconds old
33 posts = wf.cached_data('posts', get_recent_posts, max_age=600)
34

35 # Loop through the returned posts and add an item for each to
36 # the list of results for Alfred
37 for post in posts:
38 wf.add_item(title=post['description'],
39 subtitle=post['href'],
40 arg=post['href'],
41 valid=True,
42 icon=ICON_WEB)
43

44 # Send the results to Alfred as XML
45 wf.send_feedback()
46

47

48 if __name__ == u"__main__":
49 wf = Workflow()
50 sys.exit(wf.run(main))

Then we need to add the ability to receive the query from Alfred and filter our posts based on it:

1 # encoding: utf-8
2

3 import sys
4 from workflow import Workflow, ICON_WEB, web
5

6 API_KEY = 'your-pinboard-api-key'
7

8

9 def get_recent_posts():
10 """Retrieve recent posts from Pinboard.in
11

12 Returns a list of post dictionaries.
13

14 """
15 url = 'https://api.pinboard.in/v1/posts/recent'
16 params = dict(auth_token=API_KEY, count=100, format='json')
17 r = web.get(url, params)
18

19 # throw an error if request failed
20 # Workflow will catch this and show it to the user
21 r.raise_for_status()
22

23 # Parse the JSON returned by pinboard and extract the posts
24 result = r.json()
25 posts = result['posts']
26 return posts
27

28

29 def search_key_for_post(post):

4.1. Tutorial 21

Alfred-Workflow Documentation, Release 1.13

30 """Generate a string search key for a post"""
31 elements = []
32 elements.append(post['description']) # title of post
33 elements.append(post['tags']) # post tags
34 elements.append(post['extended']) # description
35 return u' '.join(elements)
36

37

38 def main(wf):
39

40 # Get query from Alfred
41 if len(wf.args):
42 query = wf.args[0]
43 else:
44 query = None
45

46 # Retrieve posts from cache if available and no more than 600
47 # seconds old
48 posts = wf.cached_data('posts', get_recent_posts, max_age=600)
49

50 # If script was passed a query, use it to filter posts
51 if query:
52 posts = wf.filter(query, posts, key=search_key_for_post)
53

54 # Loop through the returned posts and add an item for each to
55 # the list of results for Alfred
56 for post in posts:
57 wf.add_item(title=post['description'],
58 subtitle=post['href'],
59 arg=post['href'],
60 valid=True,
61 icon=ICON_WEB)
62

63 # Send the results to Alfred as XML
64 wf.send_feedback()
65

66

67 if __name__ == u"__main__":
68 wf = Workflow()
69 sys.exit(wf.run(main))

Looking at main() first, we add a query variable (lines 40–44). Because our Script Filter can run with or
without an argument, we test to see if any were passed to the script using via args attribute of Workflow , and
grab the first one if there were (this will be the contents of {query} from the Script Filter).

Using args is similar to accessing sys.argv[1:] directly, but additionally decodes the arguments to Unicode
and normalizes them. It also enables “Magic” arguments.

After getting all the posts from the cache or Pinboard, we then filter them using the Workflow.filter()
method if there is a query (lines 51–52).

Workflow.filter() implements an Alfred-like search algorithm (e.g. “am” will match “Activity Monitor”
as well as “I Am Legend”), but it needs a string to search. Therefore, we write the search_key_for_post()
(line 29) function that will build a searchable string for each post, comprising its title, tags and description (in that
order).

Important: In the last line of search_key_for_post(), we join the elements with u’ ’ (a Unicode
space), not ’ ’ (a byte-string space). The web.Response.json() method returns Unicode (as do most
Alfred-Workflow methods and functions), and mixing Unicode and byte-strings will cause a fatal error if the byte-
string contains non-ASCII characters. In this particular situation, using a byte-string space wouldn’t cause any
problems (a space is ASCII), but avoiding mixing byte-strings and Unicode is a very good habit to get into.

When coding in Python 2, you have to be aware of which strings are Unicode and which are encoded (byte) strings.

22 Chapter 4. The Alfred-Workflow Tutorial

Alfred-Workflow Documentation, Release 1.13

Best practice is to use Unicode internally and decode all text to Unicode when it arrives in your workflow (from
the Web, system etc.).

Alfred-Workflow’s APIs use Unicode and it works hard to hide as much of the complexity of working with byte-
strings and Unicode as possible, but you still need to manually decode encoded byte-strings from other sources
with Workflow.decode() to avoid fatal encoding errors.

See Encoded strings and Unicode in the User Manual for more information on dealing with encoded (byte) strings
and Unicode in workflows.

Improving the search results If you’ve been trying out the workflow, you’ve probably noticed that your queries
match a lot of posts they really shouldn’t. The reason for this is that, by default, Workflow.filter() matches
anything that contains all the characters of query in the same order, regardless of case. To fix this, we’ll add a
min_score argument to Workflow.filter(). Change the line:

posts = wf.filter(query, posts, key=search_key_for_post)

to:

posts = wf.filter(query, posts, key=search_key_for_post, min_score=20)

and try the workflow again. The junk results should be gone. You can adjust min_score up or down depending
on how strict you want to be with the results.

What now?

So we’ve got a working workflow, but it’s not yet ready to be distributed to other users (we can’t reasonably ask
users to edit the code to enter their API key, especially as they’d have to do it again after updating the workflow to
a new version). We’ll turn what we’ve got into a distribution-ready workflow in the second part of the tutorial.

Further reading For more information about writing Alfred workflows, try the following:

• A good tutorial on Alfred workflows for beginners by Richard Guay

• The Alfred Forum. It’s a good place to find workflows and the Workflow Help & Questions forum forum is
the best place to get help with writing workflows.

To learn more about coding in Python, try these resources:

• The Python Tutorial is a good place to start learning (more) about Python programming.

• Dive into Python by the dearly departed (from the Web) Mark Pilgrim is a wonderful (and free) book.

• Learn Python the Hard Way isn’t as hard as it sounds. It’s actually rather excellent, in fact.

4.1.2 Part 2: A Distribution-Ready Pinboard Workflow

In which we make our Pinboard workflow ready for the masses.

Demonstrates more advanced usage of Alfred-Workflow and a few workflow tricks that might also be of interest
to intermediate Pythonistas.

Part 2: A Distribution-Ready Pinboard Workflow

In which we create a Pinboard.in workflow ready for mass consumption.

In the first part of the tutorial, we built a useable workflow to view, search and open your recent Pinboard posts.
The workflow isn’t quite ready to be distributed to other users, however: we can’t expect them to go grubbing
around in the source code like an animal to set their own API keys.

4.1. Tutorial 23

http://computers.tutsplus.com/tutorials/alfred-workflows-for-beginners--mac-55446
http://customct.com/
http://www.alfredforum.com/
http://www.alfredforum.com/forum/13-workflow-help-questions/
http://docs.python.org/2/tutorial/
http://www.diveintopython.net/toc/index.html
http://learnpythonthehardway.org/book/
https://pinboard.in/
https://pinboard.in/

Alfred-Workflow Documentation, Release 1.13

What’s more, an update to the workflow would overwrite their changes.

So now we’re going to edit the workflow so users can add their API key from the comfort of Alfred’s friendly query
box and use Workflow.settings to save it in the workflow’s data directory where it won’t get overwritten.

Performing multiple actions from one script

To set the user’s API key, we’re going to need a new action. We could write a second script to do this, but we’re
going to stick with one script and make it smart enough to do two things, instead. The advantage of using one
script is that if you build a workflow with lots of actions, you don’t have a dozen or more scripts to manage.

We’ll start by adding an argument parser (using argparse 2) to main() and some if-clauses to alter the script’s
behaviour depending on the arguments passed to it by Alfred.

1 # encoding: utf-8
2

3 import sys
4 import argparse
5 from workflow import Workflow, ICON_WEB, ICON_WARNING, web
6

7

8 def get_recent_posts(api_key):
9 """Retrieve recent posts from Pinboard.in

10

11 Returns a list of post dictionaries.
12

13 """
14 url = 'https://api.pinboard.in/v1/posts/recent'
15 params = dict(auth_token=api_key, count=100, format='json')
16 r = web.get(url, params)
17

18 # throw an error if request failed
19 # Workflow will catch this and show it to the user
20 r.raise_for_status()
21

22 # Parse the JSON returned by pinboard and extract the posts
23 result = r.json()
24 posts = result['posts']
25 return posts
26

27

28 def search_key_for_post(post):
29 """Generate a string search key for a post"""
30 elements = []
31 elements.append(post['description']) # title of post
32 elements.append(post['tags']) # post tags
33 elements.append(post['extended']) # description
34 return u' '.join(elements)
35

36

37 def main(wf):
38

39 # build argument parser to parse script args and collect their
40 # values
41 parser = argparse.ArgumentParser()
42 # add an optional (nargs='?') --setkey argument and save its
43 # value to 'apikey' (dest). This will be called from a separate "Run Script"
44 # action with the API key
45 parser.add_argument('--setkey', dest='apikey', nargs='?', default=None)
46 # add an optional query and save it to 'query'
47 parser.add_argument('query', nargs='?', default=None)

2 argparse isn’t available in Python 2.6, so this workflow won’t run on Snow Leopard (10.6).

24 Chapter 4. The Alfred-Workflow Tutorial

http://docs.python.org/2.7/library/argparse.html#module-argparse
http://docs.python.org/2.7/library/argparse.html#module-argparse

Alfred-Workflow Documentation, Release 1.13

48 # parse the script's arguments
49 args = parser.parse_args(wf.args)
50

51 ##
52 # Save the provided API key
53 ##
54

55 # decide what to do based on arguments
56 if args.apikey: # Script was passed an API key
57 # save the key
58 wf.settings['api_key'] = args.apikey
59 return 0 # 0 means script exited cleanly
60

61 ##
62 # Check that we have an API key saved
63 ##
64

65 api_key = wf.settings.get('api_key', None)
66 if not api_key: # API key has not yet been set
67 wf.add_item('No API key set.',
68 'Please use pbsetkey to set your Pinboard API key.',
69 valid=False,
70 icon=ICON_WARNING)
71 wf.send_feedback()
72 return 0
73

74 ##
75 # View/filter Pinboard posts
76 ##
77

78 query = args.query
79 # Retrieve posts from cache if available and no more than 600
80 # seconds old
81

82 def wrapper():
83 """`cached_data` can only take a bare callable (no args),
84 so we need to wrap callables needing arguments in a function
85 that needs none.
86 """
87 return get_recent_posts(api_key)
88

89 posts = wf.cached_data('posts', wrapper, max_age=600)
90

91 # If script was passed a query, use it to filter posts
92 if query:
93 posts = wf.filter(query, posts, key=search_key_for_post, min_score=20)
94

95 # Loop through the returned posts and add a item for each to
96 # the list of results for Alfred
97 for post in posts:
98 wf.add_item(title=post['description'],
99 subtitle=post['href'],

100 arg=post['href'],
101 valid=True,
102 icon=ICON_WEB)
103

104 # Send the results to Alfred as XML
105 wf.send_feedback()
106 return 0
107

108

109 if __name__ == u"__main__":
110 wf = Workflow()

4.1. Tutorial 25

Alfred-Workflow Documentation, Release 1.13

111 sys.exit(wf.run(main))

Quite a lot has happened here: at the top in line 5, we’re importing a couple more icons that we use in main() to
notify the user that their API key is missing and that they should set it (lines 65–72).

(You can see a list of all supported icons here.)

We’ve adapted get_recent_posts() to accept an api_key argument. We could continue to use the
API_KEY global variable, but that’d be bad form.

As a result of this, we’ve had to alter the way Workflow.cached_data() is called. It can’t call a func-
tion that requires any arguments, so we’ve added a wrapper() function within main() (lines 82–87) that
calls get_recent_posts() with the necessary api_key arguments, and we pass this wrapper() function
(which needs no arguments) to Workflow.cached_data() instead (line 89).

At the top of main() (lines 39–49), we’ve added an argument parser using argparse that can take an optional
--apikey APIKEY argument and an optional query argument (remember the script doesn’t require a query).

Then, in lines 55–59, we check if an API key was passed using --apikey. If it was, we save it using settings
(see below).

Once this is done, we exit the script.

If no API key was specified with --apikey, we try to show/filter Pinboard posts as before. But first of all, we
now have to check to see if we already have an API key saved (lines 65–72). If not, we show the user a warning
(No API key set) and exit the script.

Finally, if we have an API key saved, we retrieve it and show/filter the Pinboard posts just as before (lines 78–107).

Of course, we don’t have an API key saved, and we haven’t yet set up our workflow in Alfred to save one, so the
workflow currently won’t work. Try to run it, and you’ll see the warning we just implemented:

So let’s add that functionality now.

Multi-step actions

Asking the user for input and saving it is best done in two steps:

1. Ask for the data.

2. Pass it to a second action to save it.

A Script Filter is designed to be called constantly by Alfred and return results. This time, we just want to get some
data, so we’ll use a Keyword input instead.

Go back to your workflow in Alfred’s Preferences and add a Keyword input:

26 Chapter 4. The Alfred-Workflow Tutorial

http://docs.python.org/2.7/library/argparse.html#module-argparse

Alfred-Workflow Documentation, Release 1.13

And set it up as follows (we’ll use the keyword pbsetkey because that’s what we told the user to use in the
above warning message):

You can now enter pbsetkey in Alfred and see the following:

It won’t do anything yet, though, as we haven’t connected its output to anything.

Back in Alfred’s Preferences, add a Run Script action:

4.1. Tutorial 27

Alfred-Workflow Documentation, Release 1.13

and point it at our pinboard.py script with the --setkey argument:

Finally, connect the pbsetkey Keyword to the new Run Script action:

28 Chapter 4. The Alfred-Workflow Tutorial

Alfred-Workflow Documentation, Release 1.13

Now you can call pbsetkey in Alfred, paste in your Pinboard API key and hit ENTER. It will be saved by the
workflow and pbrecent will once again work as expected. Try it.

It’s a little confusing receiving no feedback on whether the key was saved or not, so go back into Alfred’s Prefer-
ences, and add an Output > Post Notification action to your workflow:

In the resulting pop-up, enter a message to be shown in Notification Center:

4.1. Tutorial 29

Alfred-Workflow Documentation, Release 1.13

and connect the Run Script we just added to it:

Try setting your API key again with pbsetkey and this time you’ll get a notification that it was saved.

Saving settings

Saving the API key was pretty easy (1 line of code). Settings is a special dictionary that automatically saves
itself when you change its contents. It can be used much like a normal dictionary with the caveat that all values
must be serializable to JSON as the settings are saved as a JSON file in the workflow’s data directory.

Very simple, yes, but secure? No. A better place to save the API key would be in the user’s Keychain. Let’s do
that.

Saving settings securely Workflow provides three methods for managing data saved in OS X’s Keychain:
get_password(), save_password() and delete_password().

They are all called with an account name and an optional service name (by default, this is your workflow’s
bundle ID).

30 Chapter 4. The Alfred-Workflow Tutorial

Alfred-Workflow Documentation, Release 1.13

Change your pinboard.py script as follows to use Keychain instead of a JSON file to store your API key:

1 # encoding: utf-8
2

3 import sys
4 import argparse
5 from workflow import Workflow, ICON_WEB, ICON_WARNING, web, PasswordNotFound
6

7

8 def get_recent_posts(api_key):
9 """Retrieve recent posts from Pinboard.in

10

11 Returns a list of post dictionaries.
12

13 """
14 url = 'https://api.pinboard.in/v1/posts/recent'
15 params = dict(auth_token=api_key, count=100, format='json')
16 r = web.get(url, params)
17

18 # throw an error if request failed
19 # Workflow will catch this and show it to the user
20 r.raise_for_status()
21

22 # Parse the JSON returned by pinboard and extract the posts
23 result = r.json()
24 posts = result['posts']
25 return posts
26

27

28 def search_key_for_post(post):
29 """Generate a string search key for a post"""
30 elements = []
31 elements.append(post['description']) # title of post
32 elements.append(post['tags']) # post tags
33 elements.append(post['extended']) # description
34 return u' '.join(elements)
35

36

37 def main(wf):
38

39 # build argument parser to parse script args and collect their
40 # values
41 parser = argparse.ArgumentParser()
42 # add an optional (nargs='?') --apikey argument and save its
43 # value to 'apikey' (dest). This will be called from a separate "Run Script"
44 # action with the API key
45 parser.add_argument('--setkey', dest='apikey', nargs='?', default=None)
46 # add an optional query and save it to 'query'
47 parser.add_argument('query', nargs='?', default=None)
48 # parse the script's arguments
49 args = parser.parse_args(wf.args)
50

51 ##
52 # Save the provided API key
53 ##
54

55 # decide what to do based on arguments
56 if args.apikey: # Script was passed an API key
57 # save the key
58 wf.save_password('pinboard_api_key', args.apikey)
59 return 0 # 0 means script exited cleanly
60

61 ##

4.1. Tutorial 31

Alfred-Workflow Documentation, Release 1.13

62 # Check that we have an API key saved
63 ##
64

65 try:
66 api_key = wf.get_password('pinboard_api_key')
67 except PasswordNotFound: # API key has not yet been set
68 wf.add_item('No API key set.',
69 'Please use pbsetkey to set your Pinboard API key.',
70 valid=False,
71 icon=ICON_WARNING)
72 wf.send_feedback()
73 return 0
74

75 ##
76 # View/filter Pinboard posts
77 ##
78

79 query = args.query
80 # Retrieve posts from cache if available and no more than 600
81 # seconds old
82

83 def wrapper():
84 """`cached_data` can only take a bare callable (no args),
85 so we need to wrap callables needing arguments in a function
86 that needs none.
87 """
88 return get_recent_posts(api_key)
89

90 posts = wf.cached_data('posts', wrapper, max_age=600)
91

92 # If script was passed a query, use it to filter posts
93 if query:
94 posts = wf.filter(query, posts, key=search_key_for_post, min_score=20)
95

96 # Loop through the returned posts and add an item for each to
97 # the list of results for Alfred
98 for post in posts:
99 wf.add_item(title=post['description'],

100 subtitle=post['href'],
101 arg=post['href'],
102 valid=True,
103 icon=ICON_WEB)
104

105 # Send the results to Alfred as XML
106 wf.send_feedback()
107 return 0
108

109

110 if __name__ == u"__main__":
111 wf = Workflow()
112 sys.exit(wf.run(main))

get_password() raises a PasswordNotFound exception if the requested password isn’t in your Keychain,
so we import PasswordNotFound and change if not api_key: to a try ... except clause (lines
65–72).

Try running your workflow again. It will complain that you haven’t saved your API key (it’s looking in Keychain
now, not the settings), so set your API key once again, and you should be able to browse your recent posts in
Alfred once more.

And if you open Keychain Access, you’ll find the API key safely tucked away in your Keychain:

32 Chapter 4. The Alfred-Workflow Tutorial

Alfred-Workflow Documentation, Release 1.13

As a bonus, if you have multiple Macs and use iCloud Keychain, the API key will be seamlessly synced across
machines, saving you the trouble of setting up the workflow multiple times.

“Magic” arguments

Now that the API key is stored in Keychain, we don’t need it saved in the workflow’s settings any more (and having
it there that kind of defeats the purpose of using Keychain). To get rid of it, we can use one of Alfred-Workflow’s
“magic” arguments: workflow:delsettings.

Open up Alfred, and enter pbrecent workflow:delsettings. You should see the following message:

Alfred-Workflow has recognised one of its “magic” arguments, performed the corresponding action, logged it to
the log file, notified the user via Alfred and exited the workflow.

Magic arguments are designed to help coders develop and debug workflows. See “Magic” arguments for more
details.

Logging

There’s a log, you say? Yup. There’s a logging.Logger instance at Workflow.logger configured to
output to both the Terminal (in case you’re running your workflow script in Terminal) and your workflow’s log
file. Normally, I use it like this:

1 from workflow import Workflow
2

3 log = None
4

5

6 def main(wf):
7 log.debug('Started')
8

9 if __name__ == '__main__':
10 wf = Workflow()

4.1. Tutorial 33

http://docs.python.org/2.7/library/logging.html#logging.Logger

Alfred-Workflow Documentation, Release 1.13

11 log = wf.logger
12 wf.run(main)

Assigning Workflow.logger to the module global log is just a convenience. You could use wf.logger in
its place.

Spit and polish

So far, the workflow’s looking pretty good. But there are still a few of things that could be better. For one, it’s
not necessarily obvious to a user where to find their Pinboard API key (it took me a good, hard Googling to find it
while writing these tutorials). For another, it can be confusing if there are no results from a workflow and Alfred
shows its fallback Google/Amazon searches instead. Finally, the workflow is unresponsive while updating the list
of recent posts from Pinboard. That can’t be helped if we don’t have any posts cached, but apart from the very
first run, we always will, so why don’t we show what we have and update in the background?

Let’s fix those issues. The easy ones first.

Two actions, one keyword To solve the first issue (Pinboard API keys being hard to find), we’ll add a second
Keyword input that responds to the same pbsetkey keyword as our other action, but this one will just send the
user to the Pinboard password settings page where the API keys are kept.

Go back to your workflow in Alfred’s Preferences and add a new Keyword with the following settings:

Now when you type pbsetkey into Alfred, you should see two options:

34 Chapter 4. The Alfred-Workflow Tutorial

https://pinboard.in/settings/password

Alfred-Workflow Documentation, Release 1.13

The second action doesn’t do anything yet, of course, because we haven’t connected it to anything. So add an
Open URL action in Alfred, enter this URL:

https://pinboard.in/settings/password

and leave all the settings at their defaults.

Finally, connect your new Keyword to the new Open URL action:

Enter pbsetkey into Alfred once more and try out the new action. Pinboard should open in your default browser.

Easy peasy.

Notifying the user if there are no results Alfred’s default behaviour when a Script Filter returns no results is
to show its fallback searches. This is also what it does if a workflow crashes. So, the best thing to do when a user
is explicitly using your workflow is to show a message indicating that no results were found.

Change pinboard.py to the following:

4.1. Tutorial 35

https://pinboard.in/settings/password

Alfred-Workflow Documentation, Release 1.13

1 # encoding: utf-8
2

3 import sys
4 import argparse
5 from workflow import Workflow, ICON_WEB, ICON_WARNING, web, PasswordNotFound
6

7

8 def get_recent_posts(api_key):
9 """Retrieve recent posts from Pinboard.in

10

11 Returns a list of post dictionaries.
12

13 """
14 url = 'https://api.pinboard.in/v1/posts/recent'
15 params = dict(auth_token=api_key, count=100, format='json')
16 r = web.get(url, params)
17

18 # throw an error if request failed
19 # Workflow will catch this and show it to the user
20 r.raise_for_status()
21

22 # Parse the JSON returned by pinboard and extract the posts
23 result = r.json()
24 posts = result['posts']
25 return posts
26

27

28 def search_key_for_post(post):
29 """Generate a string search key for a post"""
30 elements = []
31 elements.append(post['description']) # title of post
32 elements.append(post['tags']) # post tags
33 elements.append(post['extended']) # description
34 return u' '.join(elements)
35

36

37 def main(wf):
38

39 # build argument parser to parse script args and collect their
40 # values
41 parser = argparse.ArgumentParser()
42 # add an optional (nargs='?') --apikey argument and save its
43 # value to 'apikey' (dest). This will be called from a separate "Run Script"
44 # action with the API key
45 parser.add_argument('--setkey', dest='apikey', nargs='?', default=None)
46 # add an optional query and save it to 'query'
47 parser.add_argument('query', nargs='?', default=None)
48 # parse the script's arguments
49 args = parser.parse_args(wf.args)
50

51 ##
52 # Save the provided API key
53 ##
54

55 # decide what to do based on arguments
56 if args.apikey: # Script was passed an API key
57 # save the key
58 wf.save_password('pinboard_api_key', args.apikey)
59 return 0 # 0 means script exited cleanly
60

61 ##
62 # Check that we have an API key saved
63 ##

36 Chapter 4. The Alfred-Workflow Tutorial

Alfred-Workflow Documentation, Release 1.13

64

65 try:
66 api_key = wf.get_password('pinboard_api_key')
67 except PasswordNotFound: # API key has not yet been set
68 wf.add_item('No API key set.',
69 'Please use pbsetkey to set your Pinboard API key.',
70 valid=False,
71 icon=ICON_WARNING)
72 wf.send_feedback()
73 return 0
74

75 ##
76 # View/filter Pinboard posts
77 ##
78

79 query = args.query
80 # Retrieve posts from cache if available and no more than 600
81 # seconds old
82

83 def wrapper():
84 """`cached_data` can only take a bare callable (no args),
85 so we need to wrap callables needing arguments in a function
86 that needs none.
87 """
88 return get_recent_posts(api_key)
89

90 posts = wf.cached_data('posts', wrapper, max_age=600)
91

92 # If script was passed a query, use it to filter posts
93 if query:
94 posts = wf.filter(query, posts, key=search_key_for_post, min_score=20)
95

96 if not posts: # we have no data to show, so show a warning and stop
97 wf.add_item('No posts found', icon=ICON_WARNING)
98 wf.send_feedback()
99 return 0

100

101 # Loop through the returned posts and add an item for each to
102 # the list of results for Alfred
103 for post in posts:
104 wf.add_item(title=post['description'],
105 subtitle=post['href'],
106 arg=post['href'],
107 valid=True,
108 icon=ICON_WEB)
109

110 # Send the results to Alfred as XML
111 wf.send_feedback()
112 return 0
113

114

115 if __name__ == u"__main__":
116 wf = Workflow()
117 sys.exit(wf.run(main))

In lines 96-99, we check to see it there are any posts, and if not, we show the user a warning, send the results to
Alfred and exit. This does away with Alfred’s distracting default searches and lets the user know exactly what’s
going on.

Greased lightning: background updates All that remains is for our workflow to provide the blazing fast results
Alfred users have come to expect. No waiting around for glacial web services for the likes of us. As long as we
have some posts saved in the cache, we can show those while grabbing an updated list in the background (and

4.1. Tutorial 37

Alfred-Workflow Documentation, Release 1.13

notifying the user of the update, of course).

Now, there are a few different ways to start a background process. We could ask the user to set up a cron job, but
cron isn’t the easiest software to use. We could add and load a Launch Agent, but that’d run indefinitely, whether
or not the workflow is being used, and even if the workflow were uninstalled. So we’d best start our background
process from within the workflow itself.

Normally, you’d use subprocess.Popen to start a background process, but that doesn’t necessarily work quite
as you might expect in Alfred: it treats your workflow as still running till the subprocess has finished, too, so it
won’t call your workflow with a new query till the update is done. Which is exactly what happens now and the
behaviour we want to avoid.

Fortunately, Alfred-Workflow provides the background module to solve this problem.

Using the background.run_in_background() and background.is_running() functions, we can
easily run a script in the background while our workflow remains responsive to Alfred’s queries.

Alfred-Workflow’s background module is based on, and uses the same API as subprocess.call(), but
it runs the command as a background daemon process (consequently, it won’t return anything). So, our updater
script will be called from our main workflow script, but background will run it as a background process. This
way, it will appear to exit immediately, so Alfred will keep on calling our workflow every time the query changes.

Meanwhile, our main workflow script will check if the background updater is running and post a useful, friendly
notification if it is.

Let’s have at it.

Background updater script Create a new file in the workflow root directory called update.py with these
contents:

1 # encoding: utf-8
2

3

4 from workflow import web, Workflow, PasswordNotFound
5

6

7 def get_recent_posts(api_key):
8 """Retrieve recent posts from Pinboard.in
9

10 Returns a list of post dictionaries.
11

12 """
13 url = 'https://api.pinboard.in/v1/posts/recent'
14 params = dict(auth_token=api_key, count=100, format='json')
15 r = web.get(url, params)
16

17 # throw an error if request failed
18 # Workflow will catch this and show it to the user
19 r.raise_for_status()
20

21 # Parse the JSON returned by pinboard and extract the posts
22 result = r.json()
23 posts = result['posts']
24 return posts
25

26

27 def main(wf):
28 try:
29 # Get API key from Keychain
30 api_key = wf.get_password('pinboard_api_key')
31

32 # Retrieve posts from cache if available and no more than 600
33 # seconds old
34

38 Chapter 4. The Alfred-Workflow Tutorial

http://robots.thoughtbot.com/example-writing-a-launch-agent-for-apples-launchd
http://docs.python.org/2.7/library/subprocess.html#subprocess.Popen
http://docs.python.org/2.7/library/subprocess.html#subprocess.call

Alfred-Workflow Documentation, Release 1.13

35 def wrapper():
36 """`cached_data` can only take a bare callable (no args),
37 so we need to wrap callables needing arguments in a function
38 that needs none.
39 """
40 return get_recent_posts(api_key)
41

42 posts = wf.cached_data('posts', wrapper, max_age=600)
43 # Record our progress in the log file
44 wf.logger.debug('{} Pinboard posts cached'.format(len(posts)))
45

46 except PasswordNotFound: # API key has not yet been set
47 # Nothing we can do about this, so just log it
48 wf.logger.error('No API key saved')
49

50 if __name__ == '__main__':
51 wf = Workflow()
52 wf.run(main)

At the top of the file (line 7), we’ve copied the get_recent_posts() function from pinboard.py (we
won’t need it there any more).

The contents of the try block in main() (lines 29–44) are once again copied straight from pinboard.py
(where we won’t be needing them any more).

The except clause (lines 46–48) is to trap the PasswordNotFound error that
Workflow.get_password() will raise if the user hasn’t set their API key via Alfred yet. update.py can
quietly die if no API key has been set because pinboard.py takes care of notifying the user to set their API
key.

Let’s try out update.py. Open a Terminal window at the workflow root directory and run the following:

python update.py

If it works, you should see something like this:

1 21:59:59 workflow.py:855 DEBUG get_password : net.deanishe.alfred-pinboard-recent:pinboard_api_key
2 21:59:59 workflow.py:544 DEBUG Loading cached data from : /Users/dean/Library/Caches/com.runningwithcrayons.Alfred-2/Workflow Data/net.deanishe.alfred-pinboard-recent/posts.cache
3 21:59:59 update.py:111 DEBUG 100 Pinboard posts cached
4 22:19:25 workflow.py:371 INFO Opening workflow log file

As you can see in the 3rd line, update.py did its job.

Running update.py from pinboard.py So now let’s update pinboard.py to call update.py instead
of doing the update itself:

1 # encoding: utf-8
2

3 import sys
4 import argparse
5 from workflow import (Workflow, ICON_WEB, ICON_INFO, ICON_WARNING,
6 PasswordNotFound)
7 from workflow.background import run_in_background, is_running
8

9

10 def search_key_for_post(post):
11 """Generate a string search key for a post"""
12 elements = []
13 elements.append(post['description']) # title of post
14 elements.append(post['tags']) # post tags
15 elements.append(post['extended']) # description
16 return u' '.join(elements)
17

4.1. Tutorial 39

http://www.youtube.com/watch?v=xsCCgITrrWI

Alfred-Workflow Documentation, Release 1.13

18

19 def main(wf):
20

21 # build argument parser to parse script args and collect their
22 # values
23 parser = argparse.ArgumentParser()
24 # add an optional (nargs='?') --apikey argument and save its
25 # value to 'apikey' (dest). This will be called from a separate "Run Script"
26 # action with the API key
27 parser.add_argument('--setkey', dest='apikey', nargs='?', default=None)
28 # add an optional query and save it to 'query'
29 parser.add_argument('query', nargs='?', default=None)
30 # parse the script's arguments
31 args = parser.parse_args(wf.args)
32

33 ##
34 # Save the provided API key
35 ##
36

37 # decide what to do based on arguments
38 if args.apikey: # Script was passed an API key
39 # save the key
40 wf.save_password('pinboard_api_key', args.apikey)
41 return 0 # 0 means script exited cleanly
42

43 ##
44 # Check that we have an API key saved
45 ##
46

47 try:
48 wf.get_password('pinboard_api_key')
49 except PasswordNotFound: # API key has not yet been set
50 wf.add_item('No API key set.',
51 'Please use pbsetkey to set your Pinboard API key.',
52 valid=False,
53 icon=ICON_WARNING)
54 wf.send_feedback()
55 return 0
56

57 ##
58 # View/filter Pinboard posts
59 ##
60

61 query = args.query
62

63 # Get posts from cache. Set `data_func` to None, as we don't want to
64 # update the cache in this script and `max_age` to 0 because we want
65 # the cached data regardless of age
66 posts = wf.cached_data('posts', None, max_age=0)
67

68 # Start update script if cached data is too old (or doesn't exist)
69 if not wf.cached_data_fresh('posts', max_age=600):
70 cmd = ['/usr/bin/python', wf.workflowfile('update.py')]
71 run_in_background('update', cmd)
72

73 # Notify the user if the cache is being updated
74 if is_running('update'):
75 wf.add_item('Getting new posts from Pinboard',
76 valid=False,
77 icon=ICON_INFO)
78

79 # If script was passed a query, use it to filter posts if we have some
80 if query and posts:

40 Chapter 4. The Alfred-Workflow Tutorial

Alfred-Workflow Documentation, Release 1.13

81 posts = wf.filter(query, posts, key=search_key_for_post, min_score=20)
82

83 if not posts: # we have no data to show, so show a warning and stop
84 wf.add_item('No posts found', icon=ICON_WARNING)
85 wf.send_feedback()
86 return 0
87

88 # Loop through the returned posts and add a item for each to
89 # the list of results for Alfred
90 for post in posts:
91 wf.add_item(title=post['description'],
92 subtitle=post['href'],
93 arg=post['href'],
94 valid=True,
95 icon=ICON_WEB)
96

97 # Send the results to Alfred as XML
98 wf.send_feedback()
99 return 0

100

101

102 if __name__ == u"__main__":
103 wf = Workflow()
104 sys.exit(wf.run(main))

First of all, we’ve changed the imports a bit. We no longer need workflow.web, because we’ll use the func-
tions run_in_background() from workflow.background to call update.py instead, and we’ve also
imported another icon (ICON_INFO) to show our update message.

As noted before, get_recent_posts() has now moved to update.py, as has the wrapper() function
inside main().

Also in main(), we no longer need api_key. However, we still want to know if it has been saved, so we can
show a warning if not, so we still call Workflow.get_password(), but without saving the result.

Most importantly, we’ve now expanded the update code to check if our cached data is
fresh with Workflow.cached_data_fresh() and to run the update.py script via
background.run_in_background() if not (Workflow.workflowfile() returns the full path
to a file in the workflow’s root directory).

Then we check if the update process is running via background.is_running() using the name we assigned
to the process (update), and notify the user via Alfred’s results if it is.

Finally, we call Workflow.cached_data() with None as the data-retrieval function (line 66) because we
don’t want to run an update from this script, blocking Alfred. As a consequence, it’s possible that we’ll get back
None instead of a list of posts if there are no cached data, so we check for this before trying to filter None in line
80.

The fruits of your labour

Now let’s give it a spin. Open up Alfred and enter pbrecent workflow:delcache to clear the cached data.
Then enter pbrecent and start typing a query. You should see the “Getting new posts from Pinboard” message
appear. Unfortunately, we won’t see any results at the moment because we just deleted the cached data.

To see our background updater weave its magic, we can change the max_age parameter passed to
Workflow.cached_data() in update.py on line 42 and to Workflow.cached_data_fresh() in
pinboard.py on line 69 to 60. Open up Alfred, enter pbrecent and a couple of letters, then twiddle your
thumbs for ~55 seconds. Type another letter or two and you should see the “Getting new posts. . . ” message and
search results. Cool, huh?

4.1. Tutorial 41

Alfred-Workflow Documentation, Release 1.13

Sharing your workflow Now you’ve produced a technical marvel, it’s time to tell the world and enjoy the well-
earned plaudits. To build your workflow, open it up in Alfred’s Preferences, right-click on the workflow’s name in
the list on the left-hand side, and choose Export. . . . This will save a .alfredworkflow file that you can share
with other people. .alfredworkflow files are just ZIP files with a different extension. If you want to have a
poke around inside one, just change the extension to .zip and extract it in the normal way.

And how do you share your Workflow with the world?

There’s a Share your Workflows thread on the official Alfred forum, but being a forum, it’s less than ideal as a
directory for workflows. Also, you’d need to find your own place to host your workflow file (for which GitHub
and Dropbox are both good, free choices).

It’s a good idea to sign up for the Alfred forum and post a thread for your workflow, so users can get in touch
with you, but you might want to consider uploading it to Packal.org, a site specifically designed for hosting Alfred
workflows. Your workflow will be much easier to find on that site than in the forum, and they’ll also host the
workflow download for you.

Updating your workflow Software, like plans, never survives contact with the enemy, err, user.

It’s likely that a bug or two will be found and some sweet improvements will be suggested, and so you’ll probably
want to release a new and improved version of your workflow somewhere down the line.

Instead of requiring your users to regularly visit a forum thread or a website to check for an update, there are a
couple of ways you can have your workflow (semi-)automatically updated.

The Packal Updater The simplest way in terms of implementation is to upload your workflow to Packal.org.
If you release a new version, any user who also uses the Packal Updater workflow will then be notified of the
updated version. The disadvantage of this method is it only works if a user installs and uses the Packal Updater
workflow.

GitHub releases A slightly more complex to implement method is to use Alfred-Workflow’s built-in support for
updates via GitHub releases. If you tell your Workflow object the name of your GitHub repo and the installed
workflow’s version number, Alfred-Workflow will automatically check for a new version every day.

By default, Alfred-Workflow won’t inform the user of the new version or update the workflow un-
less the user explicitly uses the workflow:update “magic” argument, but you can check the
Workflow.update_available attribute and inform the user of the availability of an update if it’s True.

See Self-updating in the User Manual for information on how to enable your workflow to update itself from
GitHub.

42 Chapter 4. The Alfred-Workflow Tutorial

http://www.alfredforum.com/forum/3-share-your-workflows/
http://www.alfredforum.com/
http://www.packal.org/
http://www.packal.org/
http://www.packal.org/workflow/packal-updater
http://www.packal.org/workflow/packal-updater
http://www.packal.org/workflow/packal-updater
https://help.github.com/articles/about-releases

CHAPTER 5

User Manual

If you know your way around Python and Alfred, here’s an overview of what Alfred-Workflow can do and how to
do it.

5.1 User Manual

This section describes how to use the features of Alfred-Workflow.

If you’re new to writing workflows or coding in general, start with the Tutorial.

Tip: If you’re writing a workflow that uses data from the system (e.g. from files/the filesystem or via command-
line programs called via subprocess), please read Encoded strings and Unicode, which describes how to handle
data from sources other than Alfred-Workflow’s libraries.

5.1.1 Supported OS X versions

Alfred 2 supports every version of OS X from 10.6 (Snow Leopard). Alfred-Workflow also supports the same
versions, but there are a couple of things you have to watch out for because 10.6 has Python 2.6, while later
versions have Python 2.7. As a result, if you want to maximise the compatibility of your workflow, you need to
avoid using 2.7-only features in your code.

Here is the full list of new features in Python 2.7, but the most important things if you want your workflow to run
on Snow Leopard are:

• argparse is not available in 2.6. Use getopt or include argparse in your workflow. Personally, I’m a
big fan of docopt for parsing command-line arguments, but argparse is better for certain use cases.

• No dictionary views in 2.6.

• No set literals.

• No dictionary or set comprehensions.

• You must specify field numbers for str.format(), i.e. ’{0}.{1}’.format(first, second)
not just ’{}.{}’.format(first, second).

• No Counter or OrderedDict in collections.

Python 2.6 is still included in later versions of OS X (up to and including Yosemite), so run your Python scripts
with /usr/bin/python2.6 in addition to /usr/bin/python (2.7) to make sure they will run on Snow
Leopard.

43

http://docs.python.org/2.7/library/subprocess.html#module-subprocess
https://docs.python.org/3/whatsnew/2.7.html
http://docs.python.org/2.7/library/argparse.html#module-argparse
http://docs.python.org/2.7/library/getopt.html#module-getopt
https://pypi.python.org/pypi/argparse
http://docopt.org/
http://docs.python.org/2.7/library/argparse.html#module-argparse
http://docs.python.org/2.7/library/stdtypes.html#str.format
http://docs.python.org/2.7/library/collections.html#collections.Counter
http://docs.python.org/2.7/library/collections.html#collections.OrderedDict
http://docs.python.org/2.7/library/collections.html#module-collections

Alfred-Workflow Documentation, Release 1.13

5.1.2 Workflow setup and skeleton

Alfred-Workflow is aimed particularly at authors of so-called Script Filters. These are activated by a keyword in
Alfred, receive user input and return results to Alfred.

To write a Script Filter with Alfred-Workflow, make sure your Script Filter is set to use /bin/bash as the
Language, and select the following (and only the following) Escaping options:

• Backquotes

• Double Quotes

• Dollars

• Backslashes

The Script field should contain the following:

/usr/bin/python yourscript.py "{query}"

where yourscript.py is the name of your script 1.

Your workflow should start out like this. This enables Workflow to capture any errors thrown by your scripts:

1 #!/usr/bin/python
2 # encoding: utf-8
3

4 import sys
5

6 from workflow import Workflow
7

8 log = None
9

10

11 def main(wf):
12 # The Workflow instance will be passed to the function
13 # you call from `Workflow.run`
14

15 # Your imports here if you want to catch import errors
16 import somemodule
17 import anothermodule
18

19 # Get args from Workflow as normalized Unicode
20 args = wf.args
21

22 # Do stuff here ...
23

24 # Add an item to Alfred feedback
25 wf.add_item('Item title', 'Item subtitle')
26

27 # Send output to Alfred
28 wf.send_feedback()
29

30

31 if __name__ == '__main__':
32 wf = Workflow()
33 # Assign Workflow logger to a global variable for convenience
34 log = wf.logger
35 sys.exit(wf.run(main))

1 It’s better to specify /usr/bin/python over just python. This ensures that the script will always be run with the system default
Python regardless of what PATH might be.

44 Chapter 5. User Manual

Alfred-Workflow Documentation, Release 1.13

5.1.3 Including 3rd party libraries

It’s a Very Bad Idea ™ to install (or ask users to install) 3rd-party libraries in the OS X system Python. Alfred-
Workflow makes it easy to include them in your Workflow.

Simply create a lib subdirectory under your Workflow’s root directory and install your dependencies there. You
can call the directory whatever you want, but in the following explanation, I’ll assume you used lib.

To install libraries in your dependencies directory, use:

pip install --target=path/to/my/workflow/lib python-lib-name

The path you pass as the --target argument should be the path to the directory under your Workflow’s root
directory in which you want to install your libraries. python-lib-name should be the “pip name” (i.e. the
name the library has on PyPI) of the library you want to install, e.g. requests or feedparser.

This name is usually, but not always, the same as the name you use with import.

For example, to install Alfred-Workflow, you would run pip install Alfred-Workflow but use import
workflow to import it.

An example: You’re in a shell in Terminal.app in the Workflow’s root directory and you’re using lib as the
directory for your Python libraries. You want to install requests. You would run:

pip install --target=lib requests

This will install the requests library into the lib subdirectory of the current working directory.

Then you instantiate Workflow with the libraries argument:

1 from workflow import Workflow
2

3 def main(wf):
4 import requests # Imported from ./lib
5

6 if __name__ == '__main__':
7 wf = Workflow(libraries=['./lib'])
8 sys.exit(wf.run(main))

When using this feature you do not need to create an __init__.py file in the lib subdirectory.
Workflow(..., libraries=[’./lib’]) and creating ./lib/__init__.py are effectively equal al-
ternatives.

Instead of using Workflow(..., libraries=[’./lib’]), you can add an empty __init__.py file
to your lib subdirectory and import the libraries installed therein using:

from lib import requests

instead of simply:

import requests

5.1.4 Persistent data

Note: If you are writing your own files without using the Workflow APIs, please see A note on Script Be-
haviour.

Alfred provides special data and cache directories for each Workflow (in ~/Library/Application
Support and ~/Library/Caches respectively). Workflow provides the following attributes/methods to
make it easier to access these directories:

• datadir — The full path to your Workflow’s data directory.

• cachedir — The full path to your Workflow’s cache directory.

5.1. User Manual 45

https://pypi.python.org/pypi
http://docs.python-requests.org/en/latest/

Alfred-Workflow Documentation, Release 1.13

• datafile(filename) — The full path to filename under the data directory.

• cachefile(filename) — The full path to filename under the cache directory.

The cache directory may be deleted during system maintenance, and is thus only suitable for temporary data or
data that is easily recreated. Workflow‘s cache methods reflect this, and make it easy to replace cached data that
are too old. See Caching data for details of the data caching API.

The data directory is intended for more permanent, user-generated data, or data that cannot be otherwise easily
recreated. See Storing data for details of the data storage API.

It is easy to specify a custom file format for your stored data via the serializer argument if you want your
data to be readable by the user or by other software. See Serialization of stored/cached data for more details.

Tip: There are also simliar methods related to the root directory of your Workflow (where info.plist and
your code are):

• workflowdir — The full path to your Workflow’s root directory.

• workflowfile(filename) — The full path to filename under your Workflow’s root directory.

These are used internally to implement “Magic” arguments, which provide assistance with debugging, updating
and managing your workflow.

In addition, Workflow also provides a convenient interface for storing persistent settings with
Workflow.settings. See Settings and Keychain access for more information on storing settings and sen-
sitive data.

Caching data

Workflow provides a few methods to simplify caching data that is slow to retrieve or expensive to generate (e.g.
downloaded from a web API). These data are cached in your workflow’s cache directory (see cachedir). The
main method is Workflow.cached_data(), which takes a name under which the data should be cached, a
callable to retrieve the data if they aren’t in the cache (or are too old), and a maximum age in seconds for the
cached data:

1 from workflow import web, Workflow
2

3 def get_data():
4 return web.get('https://example.com/api/stuff').json()
5

6 wf = Workflow()
7 data = wf.cached_data('stuff', get_data, max_age=600)

To retrieve data only if they are in the cache, call with None as the data-retrieval function (which is the default):

data = wf.cached_data('stuff', max_age=600)

Note: This will return None if there are no corresponding data in the cache.

This is useful if you want to update your cache in the background, so it doesn’t impact your Workflow’s respon-
siveness in Alfred. (See the tutorial for an example of how to run an update script in the background.)

Tip: Passing max_age=0 will return the cached data regardless of age.

Clearing cached data

There is a convenience method for clearing a workflow’s cache directory.

clear_cache() will by default delete all the files contained in cachedir. This is the method called if you
use the workflow:delcache or workflow:reset magic arguments.

46 Chapter 5. User Manual

Alfred-Workflow Documentation, Release 1.13

You can selectively delete files from the cache by passing the optional filter_func argument to
clear_cache(). This callable will be called with the filename (not path) of each file in the workflow’s cache
directory.

If filter_func returns True, the file will be deleted, otherwise it will be left in the cache. For example, to
delete all .zip files in the cache, use:

1 def myfilter(filename):
2 return filename.endswith('.zip')
3

4 wf.clear_cache(myfilter)

or more simply:

1 wf.clear_cache(lambda f: f.endswith('.zip'))

Storing data

Workflow provides two methods to store and retrieve permanent data: store_data() and
stored_data().

These data are stored in your workflow’s data directory (see datadir).

1 from workflow import Workflow
2

3 wf = Workflow()
4 wf.store_data('name', data)
5 # data will be `None` if there is nothing stored under `name`
6 data = wf.stored_data('name')

These methods do not support the data expiry features of the cached data methods, but you can specify your own
serializer for each datastore, making it simple to store data in, e.g., JSON or YAML format.

You should use these methods (and not the data caching ones) if the data you are saving should not be deleted as
part of system maintenance.

If you want to specify your own file format/serializer, please see Serialization of stored/cached data for details.

Clearing stored data

As with cached data, there is a convenience method for deleting all the files stored in your workflow’s datadir.

By default, clear_data()will delete all the files stored in datadir. It is used by the workflow:deldata
and workflow:reset magic arguments.

It is possible to selectively delete files contained in the data directory by supplying the optional filter_func
callable. Please see Clearing cached data for details on how filter_func works.

Settings

Workflow.settings is a subclass of dict that automatically saves its contents to the settings.json
file in your Workflow’s data directory when it is changed.

Settings can be used just like a normal dict with the caveat that all keys and values must be serializable to
JSON.

Warning: A Settings instance can only automatically recognise when you directly alter the values of its
own keys:

5.1. User Manual 47

http://docs.python.org/2.7/library/stdtypes.html#dict
http://docs.python.org/2.7/library/stdtypes.html#dict

Alfred-Workflow Documentation, Release 1.13

1 wf = Workflow()
2 wf.settings['key'] = {'key2': 'value'} # will be automatically saved
3 wf.settings['key']['key2'] = 'value2' # will *not* be automatically saved

If you’ve altered a data structure stored within your workflow’s Workflow.settings, you need to explicitly
call Workflow.settings.save().

If you need to store arbitrary data, you can use the cached data API.

If you need to store data securely (such as passwords and API keys), Workflow also provides simple access to
the OS X Keychain.

Keychain access

Methods Workflow.save_password(account, password), Workflow.get_password(account)
and Workflow.delete_password(account) allow access to the Keychain. They may raise
PasswordNotFound if no password is set for the given account or KeychainError if there is a
problem accessing the Keychain. Passwords are stored in the user’s default Keychain. By default, the Workflow’s
Bundle ID will be used as the service name, but this can be overridden by passing the service argument to the
above methods.

Example usage:

1 from workflow import Workflow
2

3 wf = Workflow()
4

5 wf.save_password('hotmail-password', 'password1lolz')
6

7 password = wf.get_password('hotmail-password')
8

9 wf.delete_password('hotmail-password')
10

11 # raises PasswordNotFound exception
12 password = wf.get_password('hotmail-password')

See the relevant part of the tutorial for a full example.

A note on Script Behaviour

In version 2.7, Alfred introduced a new Script Behaviour setting for Script Filters. This allows you (among other
things) to specify that a running script should be killed if the user continues typing in Alfred.

If you enable this setting, it’s possible that Alfred will terminate your script in the middle of some critical code
(e.g. writing a file). Alfred-Workflow provides the uninterruptible decorator to prevent your script being
terminated in the middle of a critical function.

Any function wrapped with uninterruptible will be executed fully, and any signal caught during its execu-
tion will be handled when your function completes.

For example:

1 from workflow.workflow import uninterruptible
2

3 @uninterruptible
4 def critical_function():
5 # Your critical code here

If you only want to write to a file, you can use the atomic_writer context manager. This does not guarantee
that the file will be written, but does guarantee that it will only be written if the write succeeds (the data is first
written to a temporary file).

48 Chapter 5. User Manual

Alfred-Workflow Documentation, Release 1.13

5.1.5 Searching/filtering data

Workflow.filter() provides an Alfred-like search algorithm for filtering your workflow’s data. By default,
Workflow.filter() will try to match your search query via CamelCase, substring, initials and all charac-
ters, applying different weightings to the various kind of matches (see Workflow.filter() for a detailed
description of the algorithm and match flags).

Warning: Check query before calling Workflow.filter(). query may not be empty or contain only
whitespace. This will raise a ValueError.
Workflow.filter() is not a “little sister” of a Script Filter and won’t return a list of all results if query
is empty. query is not an optional argument and trying to filter data against a meaningless query is treated as
an error.
Workflow.filter()won’t complain if items is an empty list, but it will raise a ValueError if query
is empty.

Best practice is to do the following:

1 def main(wf):
2

3 query = None # Ensure `query` is initialised
4

5 # Set `query` if a value was passed (it may be an empty string)
6 if len(wf.args):
7 query = wf.args[0]
8

9 items = load_my_items_from_somewhere() # Load data from blah
10

11 if query: # Only call `filter()` if there's a `query`
12 items = wf.filter(query, items)
13

14 # Show error if there are no results. Otherwise, Alfred will show
15 # its fallback searches (i.e. "Search Google for 'XYZ'")
16 if not items:
17 wf.add_item('No items', icon=ICON_WARNING)
18

19 # Generate list of results. If `items` is an empty list,
20 # nothing will happen
21 for item in items:
22 wf.add_item(item['title'], ...)
23

24 wf.send_feedback() # Send results to Alfred via STDOUT

This is by no means essential (wf.args[0] will always be set if the script is called from Alfred via python
thescript.py "{query}"), but it won’t work from the command line unless called with an empty string
(python thescript.py ""), and it’s good to be aware of when you’re dealing with unset/empty variables.

Note: By default, Workflow.filter() will match and return anything that contains all the characters in
query in the same order, regardless of case. Not only can this lead to unacceptable performance when working
with thousands of items, but it’s also very likely that you’ll want to set the standard a little higher.

See Restricting results for info on how to do that.

To use Workflow.filter(), pass it a query, a list of items to filter and sort, and if your list contains items
other than strings, a key function that generates a string search key for each item:

1 from workflow import Workflow
2

3 names = ['Bob Smith', 'Carrie Jones', 'Harry Johnson', 'Sam Butterkeks']
4

5 wf = Workflow()
6

5.1. User Manual 49

Alfred-Workflow Documentation, Release 1.13

7 hits = wf.filter('bs', names)

Which returns:

['Bob Smith', 'Sam Butterkeks']

(bs are Bob Smith’s initials and Butterkeks contains both letters in that order.)

If your data are not strings:

1 from workflow import Workflow
2

3 books = [
4 {'title': 'A damn fine afternoon', 'author': 'Bob Smith'},
5 {'title': 'My splendid adventure', 'author': 'Carrie Jones'},
6 {'title': 'Bollards and other street treasures', 'author': 'Harry Johnson'},
7 {'title': 'The horrors of Tuesdays', 'author': 'Sam Butterkeks'}
8]
9

10

11 def key_for_book(book):
12 return '{} {}'.format(book['title'], book['author'])
13

14 wf = Workflow()
15

16 hits = wf.filter('bot', books, key_for_book)

Which returns:

[{'author': 'Harry Johnson', 'title': 'Bollards and other street treasures'},
{'author': 'Bob Smith', 'title': 'A damn fine afternoon'}]

Restricting results

Chances are, you would not want bot to match Bob Smith A damn fine afternoon at all, or indeed
any of the other books. Indeed, they have very low scores:

hits = wf.filter('bot', books, key_for_book, include_score=True)

produces:

[({'author': 'Bob Smith', 'title': 'A damn fine afternoon'},
11.11111111111111,
64),

({'author': 'Harry Johnson', 'title': 'Bollards and other street treasures'},
3.3333333333333335,
64),

({'author': 'Sam Butterkeks', 'title': 'The horrors of Tuesdays'}, 3.125, 64)]

(64 is the rule that matched, MATCH_ALLCHARS, which matches if all the characters in query appear in order
in the search key, regardless of case).

Tip: rules in filter() results are returned as integers. To see the name of the corresponding rule, see
Matching rules.

If we filter {’author’: ’Brienne of Tarth’, ’title’: ’How to beat up men’} and
{’author’: ’Zoltar’, ’title’: ’Battle of the Planets’}, which we probably would
want to match bot, we get:

[({'author': 'Zoltar', 'title': 'Battle of the Planets'}, 98.0, 8),
({'author': 'Brienne of Tarth', 'title': 'How to beat up men'}, 90.0, 16)]

50 Chapter 5. User Manual

Alfred-Workflow Documentation, Release 1.13

(The ranking would be reversed if key_for_book() returned author title instead of title author.)

So in all likelihood, you’ll want to pass a min_score argument to Workflow.filter():

hits = wf.filter('bot', books, key_for_book, min_score=20)

and/or exclude some of the matching rules:

1 from workflow import Workflow, MATCH_ALL, MATCH_ALLCHARS
2

3 # [...]
4

5 hits = wf.filter('bot', books, key_for_book, match_on=MATCH_ALL ^ MATCH_ALLCHARS)

You can set match rules using bitwise operators, so | to combine them or ^ to remove them from MATCH_ALL:

1 # match only CamelCase and initials
2 match_on=MATCH_CAPITALS | MATCH_INITIALS
3

4 # match everything but all-characters-in-item and substring
5 match_on=MATCH_ALL ^ MATCH_ALLCHARS ^ MATCH_SUBSTRING

Warning: MATCH_ALLCHARS is particularly slow and provides the worst matches. You should consider
excluding it, especially if you’re calling Workflow.filter() with more than a few hundred items or
expect multi-word queries.

Diacritic folding

By default, Workflow.filter() will fold non-ASCII characters to approximate ASCII equivalents (e.g.
é > e, ü > u) if query contains only ASCII characters. This behaviour can be turned off by passing
fold_diacritics=False to Workflow.filter().

Note: To keep the library small, only a subset of European languages are supported. The Unidecode library
should be used for comprehensive support of non-European alphabets.

Users may override a Workflow’s default settings via workflow:folding... magic arguments.

“Smart” punctuation

The default diacritic folding only alters letters, not punctuation. If your workflow also works with
text that contains so-called “smart” (i.e. curly) quotes or n- and m-dashes, you can use the
Workflow.dumbify_punctuation() method to replace smart quotes and dashes with normal quotes and
hyphens respectively.

Matching rules

Here are the MATCH_* constants from workflow and their numeric values.

For a detailed description of the rules see Workflow.filter().

5.1. User Manual 51

https://pypi.python.org/pypi/Unidecode

Alfred-Workflow Documentation, Release 1.13

Name Value
MATCH_STARTSWITH 1
MATCH_CAPITALS 2
MATCH_ATOM 4
MATCH_INITIALS_STARTSWITH 8
MATCH_INITIALS_CONTAIN 16
MATCH_INITIALS 24
MATCH_SUBSTRING 32
MATCH_ALLCHARS 64
MATCH_ALL 127

5.1.6 Retrieving data from the web

The unit tests in the source repository contain examples of pretty much everything workflow.web can do:

• GET and POST variables

• Retrieve and decode JSON

• Post JSON

• Post forms

• Automatically handle encoding for HTML and XML

• Basic authentication

• File uploads with forms and without forms

• Download large files

• Variable timeouts

• Ignore redirects

See the API documentation for more information.

5.1.7 Background processes

Many workflows provide a convenient interface to applications and/or web services.

For performance reasons, it’s common for workflows to cache data locally, but updating this cache typically takes
a few seconds, making your workflow unresponsive while an update is occurring, which is very un-Alfred-like.

To avoid such delays, Alfred-Workflow provides the background module to allow you to easily run scripts in
the background.

There are two functions, run_in_background() and is_running(), that provide the interface. The pro-
cesses started are full daemon processes, so you can start real servers as easily as simple scripts.

Here’s an example of a common usage pattern (updating cached data in the background). What we’re doing is:

1. Checking the age of the cached data and running the update script via run_in_background() if the
cached data are too old or don’t exist.

2. (Optionally) informing the user that data are being updated.

3. Loading the cached data regardless of age.

4. Displaying the cached data (if any).

1 from workflow import Workflow, ICON_INFO
2 from workflow.background import run_in_background, is_running
3

4 def main(wf):
5 # Is cache over 1 hour old or non-existent?

52 Chapter 5. User Manual

https://github.com/deanishe/alfred-workflow/blob/fdc7c001c2cb76a41aee3e5a755486a977a36b20/tests/test_web.py
https://github.com/deanishe/alfred-workflow/blob/fdc7c001c2cb76a41aee3e5a755486a977a36b20/tests/test_web.py#L128
https://github.com/deanishe/alfred-workflow/blob/fdc7c001c2cb76a41aee3e5a755486a977a36b20/tests/test_web.py#L76
https://github.com/deanishe/alfred-workflow/blob/fdc7c001c2cb76a41aee3e5a755486a977a36b20/tests/test_web.py#L189
https://github.com/deanishe/alfred-workflow/blob/fdc7c001c2cb76a41aee3e5a755486a977a36b20/tests/test_web.py#L86
https://github.com/deanishe/alfred-workflow/blob/fdc7c001c2cb76a41aee3e5a755486a977a36b20/tests/test_web.py#L76
https://github.com/deanishe/alfred-workflow/blob/fdc7c001c2cb76a41aee3e5a755486a977a36b20/tests/test_web.py#L106
https://github.com/deanishe/alfred-workflow/blob/fdc7c001c2cb76a41aee3e5a755486a977a36b20/tests/test_web.py#L121
https://github.com/deanishe/alfred-workflow/blob/fdc7c001c2cb76a41aee3e5a755486a977a36b20/tests/test_web.py#L137
https://github.com/deanishe/alfred-workflow/blob/fdc7c001c2cb76a41aee3e5a755486a977a36b20/tests/test_web.py#L153
https://github.com/deanishe/alfred-workflow/blob/fdc7c001c2cb76a41aee3e5a755486a977a36b20/tests/test_web.py#L173
https://github.com/deanishe/alfred-workflow/blob/fdc7c001c2cb76a41aee3e5a755486a977a36b20/tests/test_web.py#L197
https://github.com/deanishe/alfred-workflow/blob/fdc7c001c2cb76a41aee3e5a755486a977a36b20/tests/test_web.py#L101
https://github.com/deanishe/alfred-workflow/blob/fdc7c001c2cb76a41aee3e5a755486a977a36b20/tests/test_web.py#L67

Alfred-Workflow Documentation, Release 1.13

6 if not wf.cached_data_fresh('exchange-rates', 3600):
7 run_in_background('update',
8 ['/usr/bin/python',
9 wf.workflowfile('update_exchange_rates.py')])

10

11 # Add a notification if the script is running
12 if is_running('update'):
13 wf.add_item('Updating exchange rates...', icon=ICON_INFO)
14

15 # max_age=0 will load any cached data regardless of age
16 exchange_rates = wf.cached_data('exchage-rates', max_age=0)
17

18 # Display (possibly stale) cache data
19 if exchange_rates:
20 for rate in exchange_rates:
21 wf.add_item(rate)
22

23 # Send results to Alfred
24 wf.send_feedback()
25

26 if __name__ == '__main__':
27 wf = Workflow()
28 wf.run(main)

For a working example, see Part 2 of the Tutorial or the source code of my Git Repos workflow, which is a bit
smarter about showing the user update information.

5.1.8 Self-updating

New in version 1.9.

Add self-updating capabilities to your workflow. It regularly (every day by default) fetches the latest releases from
the specified GitHub repository and then asks the user if they want to update the workflow if a newer version is
available.

Users can turn off automatic checks for updates with the workflow:noautoupdate magic argument and
back on again with workflow:autoupdate.

Danger: If you are not careful, you might accidentally overwrite a local version of the workflow you’re
working on and lose all your changes! It’s a good idea to make sure you increase the version number before
you start making any changes.

Currently, only updates from GitHub releases are supported.

GitHub releases

For your workflow to be able to recognise and download newer versions, the version value you pass to
Workflow should be one of the versions (i.e. tags) in the corresponding GitHub repo’s releases list. See Version
numbers for more information.

There must be one (and only one) .alfredworkflow binary attached to a release otherwise the release will
be ignored. This is the file that will be downloaded and installed via Alfred’s default installation mechanism.

Important: Releases marked as pre-release on GitHub will be ignored.

5.1. User Manual 53

https://github.com/deanishe/alfred-repos/blob/master/src/repos.py
https://github.com/deanishe/alfred-repos
https://help.github.com/categories/releases/

Alfred-Workflow Documentation, Release 1.13

Configuration

To use self-updating, you must pass a dict as the update_settings argument to Workflow . It must have
the key/value pair github_slug, which is your username and the name of the workflow’s repo in the format
username/reponame. The version of the currently installed workflow must also be specified. You can do this
in the update_settings dict or in a version file in the root of your workflow (next to info.plist), e.g.:

1 from workflow import Workflow
2

3 __version__ = '1.1'
4

5 ...
6

7 wf = Workflow(..., update_settings={
8 # Your username and the workflow's repo's name
9 'github_slug': 'username/reponame',

10 # The version (i.e. release/tag) of the installed workflow
11 # If a `version` file exists in the root of your workflow,
12 # this key may be omitted
13 'version': __version__,
14 # Optional number of days between checks for updates
15 'frequency': 7
16 }, ...)
17

18 ...
19

20 if wf.update_available:
21 # Download new version and tell Alfred to install it
22 wf.start_update()

Or alternatively, create a version file in the root directory or your workflow alongside info.plist:

Your Workflow/
icon.png
info.plist
yourscript.py
version
workflow/

...

...

The version file should be plain text with no file extension and contain nothing but the version string, e.g.:

1.2.5

Using a version file:

1 from workflow import Workflow
2

3 ...
4

5 wf = Workflow(..., update_settings={
6 # Your username and the workflow's repo's name
7 'github_slug': 'username/reponame',
8 # Optional number of days between checks for updates
9 'frequency': 7

10 }, ...)
11

12 ...
13

14 if wf.update_available:
15 # Download new version and tell Alfred to install it
16 wf.start_update()

54 Chapter 5. User Manual

http://docs.python.org/2.7/library/stdtypes.html#dict

Alfred-Workflow Documentation, Release 1.13

You must use semantic version numbering. Please see Versioning and migration for detailed information on the
required version number format and associated features.

Note: Alfred-Workflow will automatically check in the background if a newer version of your workflow is
available, but will not automatically inform the user nor download and install the update.

Usage

You can just leave it up to the user to check update status and install new versions manually using the
workflow:update magic argument in a Script Filter, or you could roll your own update handling using
Workflow.update_available and Workflow.start_update() to check for and install newer ver-
sions respectively.

The simplest way, however, is usually to add an update notification to the top of your Script Filter’s results that
triggers Alfred-Workflow’s workflow:update magic argument:

1 wf = Workflow(...update_settings={...})
2

3 if wf.update_available:
4 # Add a notification to top of Script Filter results
5 wf.add_item('New version available',
6 'Action this item to install the update',
7 autocomplete='workflow:update',
8 icon=ICON_INFO)
9

10 # Show other results here
11 ...

By adding an Item with valid=False and autocomplete=’workflow:update’, Alfred’s query will
be expanded to workflow:update when a user actions the item, which is a magic argument that will in turn
prompt Alfred-Workflow to download and install the update.

Under the hood

The check_update() method is called automatically when you call Workflow.run If sufficient time has
elapsed since the last check (1 day by default), it starts a background process that checks for new releases. You
can alter the update interval with the optional frequency key in update_settings dict (see the example
above).

Workflow.update_available is True if an update is available, and False otherwise.

Workflow.start_update() returns False if no update is available, or if one is, it will return True, then
download the newer version and tell Alfred to install it in the background.

If you want more control over the update mechanism, you can use update.check_update() directly. It
caches information on the latest available release under the cache key __workflow_update_status, which
you can access via Workflow.cached_data().

Version numbers

Please see Versioning and migration for detailed information on the required version number format and associated
features.

5.1.9 Versioning and migration

New in version 1.10.

5.1. User Manual 55

http://docs.python.org/2.7/library/stdtypes.html#dict

Alfred-Workflow Documentation, Release 1.13

If you intend to distribute your workflow, it’s a good idea to use version numbers. It allows users to see if they’re
using an out-of-date version, and more importantly, it allows you to know which version a user has when they ask
you for support or to fix a bug (that you may already have fixed).

If your workflow has a version number set (see Setting a version number), the version will be logged every time
the workflow is run to help with debugging, and can also be displayed using the workflow:version magic
argument.

If you wish to use the self-updating feature, your workflow must have a version number.

Having a version number also enables the first run/migration functionality. See First run/migration below for
details.

Setting a version number

There are two ways to set a version number. The simplest and best is to create a version file in the root directory
of your workflow (next to info.plist) that contains the version number:

Your Workflow/
icon.png
info.plist
yourscript.py
version
workflow/

...

You may also specify the version number using the version key in the update_settings dictionary passed
to Workflow , though you can only use this method if your workflow supports self-updates from GitHub.

Using a version file is preferable as then you only need to maintain the version number in one place.

Version numbers

In version 1.10 and above, Alfred-Workflow requires Semantic versioning, which is the format GitHub also ex-
pects. Alfred-Workflow deviates from the semantic versioning standard slightly, most notably in that you don’t
have to specify a minor or patch version, i.e. 1.0 is fine, as is simply 1 (the standard requires these to both be
written 1.0.0). See Semantic versioning for more details on version formatting.

The de-facto way to tag releases on GitHub is use a semantic version number preceded by v, e.g. v1.0, v2.3.1
etc., whereas the de-facto way to version Python libraries is to do the same, but without the preceding v, e.g. 1.0,
2.3.1 etc.

As a result, Alfred-Workflow will strip a preceding v from both local and remote versions (i.e. you can specify
1.0 or v1.0 in either or both of your Python code and GitHub releases).

When this is done, if the latest GitHub version is higher than the local version, Alfred-Workflow will consider the
remote version to be an update.

Thus, calling Workflow with update_settings={’version’: ’1.2’, ...} or
update_settings={’version’: ’v1.2’, ...} will be considered the same version as the
GitHub release tag v1.2 or 1.2 (or indeed 1.2.0).

Semantic versioning

Semantic versioning is a standard for formatting software version numbers.

Essentially, a version number must consist of a major version number, a minor version number and a patch version
number separated by dots, e.g. 1.0.1, 2.10.3 etc. You should increase the patch version when you fix bugs,
the minor version when you add new features and the major version if you change the API.

You may also add additional pre-release version info to the end of the version number, preceded by a hyphen (-),
e.g. 2.0.0-rc.1 or 2.0.0-beta.

56 Chapter 5. User Manual

Alfred-Workflow Documentation, Release 1.13

Alfred-Workflow differs from the standard in that you aren’t required to specify a minor or patch version, i.e. 1.0
is fine, as is 1 (and both are considered equal and also equal to 1.0.0).

This change was made as relatively few workflow authors use patch versions.

See the semantic versioning website for full details of the standard and the rationale behind it.

First run/migration

New in version 1.10.

If your workflow uses version numbers, you can use the Workflow.first_run and
Workflow.last_version_run attributes to bootstrap newly-installed workflows or to migrate data
from an older version.

first_run will be True if this version of the workflow has never run before. If an older version has previously
run, last_version_run will contain the version of that workflow.

Both last_version_run and version are Version instances (or None) to make comparison easy. Be
sure to check for None before comparing them: comparing Version and None will raise a ValueError.

last_version_run is set to the value of the currently running workflow if it runs successfully without raising
an exception.

Important: last_version_run will only be set automatically if you run your workflow via
Workflow.run(). This is because Workflow is often used as a utility class by other workflow scripts,
and you don’t want your background update script to confuse things by setting the wrong version.

If you want to set last_version_run yourself, use set_last_version().

5.1.10 System icons

The workflow module provides access to a number of default OS X icons via ICON_* constants for use when
generating Alfred feedback:

1 from workflow import Workflow, ICON_INFO
2

3 wf = Workflow()
4 wf.add_item('For your information', icon=ICON_INFO)
5 wf.send_feedback()

List of icons

These are all the icons accessible in workflow . They (and more) can be found in
/System/Library/CoreServices/CoreTypes.bundle/Contents/Resources/.

5.1. User Manual 57

http://semver.org/

Alfred-Workflow Documentation, Release 1.13

Name Preview

ICON_ACCOUNT

ICON_BURN

ICON_CLOCK

ICON_COLOR

ICON_COLOUR

ICON_EJECT

ICON_ERROR

ICON_FAVORITE

ICON_FAVOURITE

ICON_GROUP

ICON_HELP

ICON_HOME

ICON_INFO

ICON_NETWORK

ICON_NOTE

ICON_SETTINGS

ICON_SWIRL

ICON_SWITCH

ICON_SYNC

ICON_TRASH

ICON_USER

ICON_WARNING

ICON_WEB

58 Chapter 5. User Manual

Alfred-Workflow Documentation, Release 1.13

If you’d like other standard OS X icons to be added, please add an issue on GitHub.

5.1.11 “Magic” arguments

If your Script Filter (or script) accepts a query (or command line arguments), you can pass it so-called magic
arguments that instruct Workflow to perform certain actions, such as opening the log file or clearing the
cache/settings.

These can be a big help while developing and debugging and especially when debugging problems your Work-
flow’s users may be having.

The Workflow.run() method (which you should “wrap” your Workflow’s entry functions in) will catch any
raised exceptions, log them and display them in Alfred. You can call your Workflow with workflow:openlog
as an Alfred query/command line argument and Workflow will open the Workflow’s log file in the default app
(usually Console.app).

This makes it easy for you to get at the log file and data and cache directories (hidden away in ~/Library), and
for your users to send you their logs for debugging.

Note: Magic arguments will only work with scripts that accept arguments and use the args property (where
magic arguments are parsed).

Workflow supports the following magic arguments by default:

• workflow:magic — List available magic arguments.

• workflow:help — Open workflow’s help URL in default web browser. This URL is specified in the
help_url argument to Workflow .

• workflow:version — Display the installed version of the workflow (if one is set).

• workflow:delcache — Delete the Workflow’s cache.

• workflow:deldata — Delete the Workflow’s saved data.

• workflow:delsettings — Delete the Workflow’s settings file (which contains the data stored using
Workflow.settings).

• workflow:foldingdefault — Reset diacritic folding to workflow default

• workflow:foldingoff — Never fold diacritics in search keys

• workflow:foldingon — Force diacritic folding in search keys (e.g. convert ü to ue)

• workflow:opencache — Open the Workflow’s cache directory.

• workflow:opendata — Open the Workflow’s data directory.

• workflow:openlog — Open the Workflow’s log file in the default app.

• workflow:openterm — Open a Terminal window in the Workflow’s root directory.

• workflow:openworkflow — Open the Workflow’s root directory (where info.plist is).

• workflow:reset — Delete the Workflow’s settings, cache and saved data.

• workflow:update — Check for a newer version of the workflow using GitHub releases and install the
newer version if one is available.

• workflow:noautoupdate — Turn off automatic checks for updates.

• workflow:autoupdate — Turn automatic checks for updates on.

The three workflow:folding... settings allow users to override the diacritic folding set by a workflow’s
author. This may be useful if the author’s choice does not correspond with a user’s usage pattern.

You can turn off magic arguments by passing capture_args=False to Workflow on instantiation, or call
the corresponding methods of Workflow directly, perhaps assigning your own keywords within your Workflow:

5.1. User Manual 59

https://github.com/deanishe/alfred-workflow/issues

Alfred-Workflow Documentation, Release 1.13

• open_help()

• open_log()

• open_cachedir()

• open_datadir()

• open_workflowdir()

• open_terminal()

• clear_cache()

• clear_data()

• clear_settings()

• reset() (a shortcut to call the three previous clear_* methods)

• check_update()

• start_update()

Customising magic arguments

The default prefix for magic arguments (workflow:) is contained in the magic_prefix attribute of
Workflow . If you want to change it to, say, wf: (which will become the default in v2 of Alfred-Workflow),
simply reassign it:

wf.magic_prefix = 'wf:'

The magic arguments are defined in the Workflow.magic_arguments dictionary. The dictionary keys are
the keywords for the arguments (without the prefix) and the values are functions that should be called when the
magic argument is entered. You can show a message in Alfred by returning a unicode string from the function.

To add a new magic argument that opens the workflow’s settings file, you could do:

1 wf = Workflow()
2 wf.magic_prefix = 'wf:' # Change prefix to `wf:`
3

4 def opensettings():
5 subprocess.call(['open', wf.settings_path])
6 return 'Opening workflow settings...'
7

8 wf.magic_arguments['settings'] = opensettings

Now entering wf:settings as your workflow’s query in Alfred will open settings.json in the default
application.

5.1.12 Serialization of stored/cached data

By default, both cache and data files (created using the APIs described in Persistent data) are cached using
cPickle. This provides a great compromise in terms of speed and the ability to store arbitrary objects.

When changing or specifying a serializer, use the name under which the serializer is registered with the work-
flow.manager object.

60 Chapter 5. User Manual

http://docs.python.org/2.7/library/pickle.html#module-cPickle

Alfred-Workflow Documentation, Release 1.13

Warning: When it comes to cache data, it is strongly recommended to stick with the default. cPickle is
very fast and fully supports standard Python data structures (dict, list, tuple, set etc.).
If you really must customise the cache data format, you can change the default cache serialization format to
pickle thus:

1 wf = Workflow()
2 wf.cache_serializer = 'pickle'

Unlike the stored data API, the cached data API can’t determine the format of the cached data. If you change
the serializer without clearing the cache, errors will probably result as the serializer tries to load data in a
foreign format.

In the case of stored data, you are free to specify either a global default serializer or one for each individual
datastore:

1 wf = Workflow()
2 # Use `pickle` as the global default serializer
3 wf.data_serializer = 'pickle'
4

5 # Use the JSON serializer only for these data
6 wf.store_data('name', data, serializer='json')

This is primarily so you can create files that are human-readable or useable by other software. The generated
JSON is formatted to make it readable.

The stored_data() method can automatically determine the serialization of the stored data (based on the file
extension, which is the same as the name the serializer is registered under), provided the corresponding serializer
is registered. If it isn’t, a ValueError will be raised.

Built-in serializers

There are 3 built-in, pre-configured serializers:

• cpickle— the default serializer for both cached and stored data, with very good support for native Python
data types;

• pickle — a more flexible, but much slower alternative to cpickle; and

• json — a very common data format, but with limited support for native Python data types.

See the built-in cPickle, pickle and json libraries for more information on the serialization formats.

Managing serializers

You can add your own serializer, or replace the built-in ones, using the configured instance of
SerializerManager at workflow.manager, e.g. from workflow import manager.

A serializer object must have load() and dump() methods that work the same way as in the built-in
json and pickle libraries, i.e.:

1 # Reading
2 obj = serializer.load(open('filename', 'rb'))
3 # Writing
4 serializer.dump(obj, open('filename', 'wb'))

To register a new serializer, call the register() method of the workflow.manager object with the name
of the serializer and the object that performs serialization:

1 from workflow import Workflow, manager
2

3

4 class MySerializer(object):

5.1. User Manual 61

http://docs.python.org/2.7/library/pickle.html#module-cPickle
http://docs.python.org/2.7/library/pickle.html#module-pickle
http://docs.python.org/2.7/library/pickle.html#module-cPickle
http://docs.python.org/2.7/library/pickle.html#module-pickle
http://docs.python.org/2.7/library/json.html#module-json
http://docs.python.org/2.7/library/json.html#module-json
http://docs.python.org/2.7/library/pickle.html#module-pickle

Alfred-Workflow Documentation, Release 1.13

5

6 @classmethod
7 def load(cls, file_obj):
8 # load data from file_obj
9

10 @classmethod
11 def dump(cls, obj, file_obj):
12 # serialize obj to file_obj
13

14 manager.register('myformat', MySerializer())

Note: The name you specify for your serializer will be the file extension of the stored files.

Serializer interface

A serializer must conform to this interface (like json and pickle):

1 serializer.load(file_obj)
2 serializer.dump(obj, file_obj)

See the Serialization section of the API documentation for more information.

5.1.13 Encoded strings and Unicode

This is a brief guide to Unicode and encoded strings aimed at Alfred-Workflow users (and Python coders in
general) who are unfamiliar with them.

Encoding errors are by far the most common group of bugs in Python workflows in the wild (they’re so easy for
developers to miss).

This guide should give you an idea of what Unicode and encoded strings are, and why and how you as a workflow
developer should deal with them.

Important: String encoding is something Python 2 will let you largely ignore. It will happily let you mix strings
of different encodings without complaint (although the result will most likely be garbage) and if you mix Unicode
and encoded strings, Python will silently “promote” the encoded string to Unicode by decoding it as ASCII. If
your workflow only ever uses ASCII, you need never worry about Unicode or string encoding.

But make no mistake: if you distribute your workflow, somebody will feed your workflow non-ASCII text. Al-
though Alfred is English-only, it’s not used exclusively by monolingual English speakers. What’s more, standard
English-language characters, like £ or C, are also non-ASCII.

If you intend to distribute your workflow, you should make sure it works with non-ASCII text.

If you don’t, I guarantee a text-encoding issue will be one of the first bug reports.

TL;DR

Best practice in Python programs is to use Unicode internally and decode all text input and encode all text output
at IO boundaries (i.e. right where it enters/leaves your program). On OS X, UTF-8 is almost always the right
encoding.

Be sure to decode all input from and encode all output to the system (in particular via subprocess and when
passing a {query} to a subsequent workflow action).

If you don’t, your workflow will break or, at best, not work as intended when someone feeds it non-ASCII text.

Alfred-Workflow will almost always give you Unicode strings. (The exception is web.Response, whose
text() method will return an encoded string if it couldn’t determine the encoding.)

62 Chapter 5. User Manual

http://docs.python.org/2.7/library/json.html#module-json
http://docs.python.org/2.7/library/pickle.html#module-pickle
http://docs.python.org/2.7/library/subprocess.html#module-subprocess

Alfred-Workflow Documentation, Release 1.13

Use Workflow.decode() to decode input and u’My unicode string’.encode(’utf-8’) to en-
code output, e.g.:

1 #!/usr/bin/python
2 # encoding: utf-8
3

4 # Because we want to work with Unicode, it's simpler if we make
5 # literal strings in source code Unicode strings by default, so
6 # we set `encoding: utf-8` at the very top of the script to tell Python
7 # that this source file is UTF-8 and import `unicode_literals` before any
8 # code.
9 #

10 # See Tip further down the page for more info
11

12 from __future__ import unicode_literals, print_function
13

14 import subprocess
15 from workflow import Workflow
16

17 wf = Workflow()
18 # wf.args decodes and normalizes sys.argv for you
19 query = wf.args[0]
20 # `subprocess` returns encoded strings (UTF-8 in this case)
21 # Note: the arguments are prefixed with `b` because of unicode_literals
22 # You should pass encoded strings to `subprocess`. It doesn't much
23 # matter in this case, as everything can be encoded to ASCII, but if you're
24 # passing in, say, a user-supplied query, be sure to encode it to UTF-8
25 output = subprocess.check_output([b'mdfind', b'-onlyin',
26 os.getenv('HOME'),
27 b'kind:folder date:today'])
28 # Convert to Unicode and NFC-normalize
29 output = wf.decode(output)
30 # Split the output into individual filepaths
31 paths = [s.strip() for s in output.split('\n') if s.strip()]
32 # Filter paths by query
33 paths = wf.filter(query, paths,
34 # We just want to filter on filenames, not the whole path
35 key=lambda s: os.path.basename(s),
36 min_score=30)
37

38 if paths:
39 # For demonstration purposes, pass the first result as `{query}`
40 # to the next workflow Action.
41 print(paths[0].encode('utf-8'))

String types

In Python, there are two different kind of strings: Unicode and encoded strings.

Unicode strings only exist within running programs (Unicode is a concept rather than a concrete implementation),
while encoded strings are binary data that are encoded according to some scheme that maps characters to a specific
binary representation (e.g. UTF-8 or ASCII).

In Python, these have the types unicode and str respectively.

As noted, Unicode strings only exist within a running program. Any text stored on disk, passed into or out of
a program or transmitted over a network must be encoded. On OS X, almost all text (e.g. filenames, most text
output from programs) is encoded with UTF-8.

In order for your program to work properly, it’s important to ensure that all text is of the same type/encoding:

>>> u = u'Fahrvergnügen' # This is a Unicode string
>>> enc1 = u.encode('utf-8') # OS X default encoding

5.1. User Manual 63

Alfred-Workflow Documentation, Release 1.13

>>> enc2 = u.encode('latin-1') # Older standard German encoding
>>> enc1 == enc2
False
>>> u == enc1
UnicodeWarning: Unicode equal comparison failed to convert both arguments to Unicode - interpreting them as being unequal
False
>>> unicode(enc1, 'utf-8') == unicode(enc2, 'latin-1')
True

The correct way to do this in Python is to decode all text input to Unicode as soon as it enters your program. In
particular, this means:

• Command-line arguments (via sys.argv)

• Environmental variables (via os.environ)

• The contents of text files (via open())

• Data retrieved from the web (via urllib.urlopen())

• The output of subprocesses (via subprocess.check_output() or subprocess.Popen etc.)

• Filepaths (via os.listdir() etc.). Sometimes. Basically, if you pass a Unicode string to a filesystem
function, you’ll get Unicode back. If you pass an encoded string, you’ll get an encoded (UTF-8) string back.

Alfred-Workflow uses Unicode throughout, and any command-line arguments (Workflow.args), environmen-
tal variables (Workflow.alfred_env), or data from the web (e.g. web.Response.text) will be decoded
to Unicode for you.

As a result of this, it’s important that you also decode any text your workflow pulls in from other sources. When
you combine Unicode and encoded strings in Python 2, Python will “promote” the encoded string to Unicode by
attempting to decode it as ASCII. In many cases this will work, but if the encoded string contains characters that
aren’t in ASCII (e.g. £ or ü or —), your workflow will die in flames.

Tip: Always test your workflow with non-ASCII input to flush out any accidental mixing of Unicode and encoded
strings.

Workflow provides the convenience method Workflow.decode() for working with Unicode and encoded
strings. You can pass it Unicode or encoded strings and it will return normalized Unicode. You can specify the en-
coding and normalization form with the input_encoding and normalization arguments to Workflow
or with the encoding and normalization arguments to Workflow.decode(). Generally, you shouldn’t
need to change the default encoding of UTF-8, which is what OS X uses, but you may need to alter the normal-
ization depending on where your workflow gets its data from.

Tip: To save yourself from having to prefix every string in your source code with u to mark it as a Unicode string,
add from __future__ import unicode_literals at the top of your Python scripts. This makes all
unprefixed strings Unicode by default (use b’’ to create an encoded string). Add #encoding: utf-8 to the
top of your source files to tell Python that the source code is UTF-8.

Encoded strings by default:

1 # encoding: utf-8
2

3 ustr = u'This is a Unicode string'
4 bstr = 'This is a UTF-8 encoded string'

Unicode by default:

1 # encoding: utf-8
2 from __future__ import unicode_literals
3

4 ustr = 'This is a Unicode string'
5 bstr = b'This is a UTF-8 encoded string'

64 Chapter 5. User Manual

http://docs.python.org/2.7/library/sys.html#sys.argv
http://docs.python.org/2.7/library/os.html#os.environ
http://docs.python.org/2.7/library/functions.html#open
http://docs.python.org/2.7/library/urllib.html#urllib.urlopen
http://docs.python.org/2.7/library/subprocess.html#subprocess.check_output
http://docs.python.org/2.7/library/subprocess.html#subprocess.Popen
http://docs.python.org/2.7/library/os.html#os.listdir

Alfred-Workflow Documentation, Release 1.13

Normalization

Unicode provides multiple ways to represent the same character. Normalization is the process of ensuring that all
instances of a given Unicode character are represented in the same way.

TL;DR

Normalize all input.

Nitty-Gritty

If your workflow is based around comparing a user query to data from the system (filepaths, output of command-
line programs), you should instantiate Workflow with the normalization=’NFD’ argument.

If your workflow uses data from the Web (via native Python libraries, including web), you probably don’t need to
do anything (everything will be NFC-normalized).

If you’re mixing both kinds of data, the simplest solution is probably to run all data from the system through
Workflow.decode() to ensure it is normalized in the same way as data from the Web.

Why does normalization matter?

In Unicode, accented characters can be represented in different ways, e.g. ü can be represented as ü or as u+¨.
Unfortunately, Python doesn’t ensure that all Unicode strings are normalized to use the same representations when
comparing them.

Therefore, if you’re comparing a string containing ü that came from a JSON file (which will typically be NFC-
normalized) with an ostensibly identical string that came from OS X’s filesystem (which is NFD-normalized),
Python won’t recognise them as being the same:

1 >>> from unicodedata import normalize
2 >>> from glob import glob
3 >>> name = u'München.txt' # German for 'Munich'. NFC-normalized, as it's Python source code
4 >>> print(repr(name))
5 u'M\xfcnchen.txt'
6 >>> open(name, 'wb').write('') # Create an empty text file called `München.txt`
7

8 >>> for filename in glob(u'*.txt'):
9 ... if filename == name:

10 ... print(u'Match : {0} ({0!r}) == {1} ({1!r})'.format(filename, name))
11 ... else:
12 ... print(u'No match : {0} ({0!r}) != {1} ({1!r})'.format(filename, name))
13 ...
14 # The filename has been NFD-normalized by the filesystem
15 No match : München.txt (u'Mu\u0308nchen.txt') != München.txt (u'M\xfcnchen.txt')
16 >>> for filename in glob(u'*.txt'):
17 ... filename = normalize('NFC', filename) # Ensure the same normalization
18 ... if filename == name:
19 ... print(u'Match : {0} ({0!r}) == {1} ({1!r})'.format(filename, name))
20 ... else:
21 ... print(u'No match : {0} ({0!r}) != {1} ({1!r})'.format(filename, name))
22 ...
23 Match : München.txt (u'M\xfcnchen.txt') == München.txt (u'M\xfcnchen.txt')

As a result of this Unicode quirk, it’s important to ensure that all input is normalized in the same way or, for
example, a user-provided query (which may be NFC- or NFD-normalized) may not match JSON data pulled from
an API (which is probably NFC-normalized) even though they are ostensibly the same.

5.1. User Manual 65

Alfred-Workflow Documentation, Release 1.13

Normalization with Alfred-Workflow

Note: This behaviour of Alfred-Workflow is not 100% correct. There are some strings (notably in Asian al-
phabets) that cannot be represented in all normalization forms, particularly NFC, which Alfred-Workflow uses by
default. However, I decided to NFC-normalize all text you will get from Alfred-Workflow by default, as this will
work as expected in 99+% of cases, and insulate Alfred-Workflow users from much of the pain of text encoding.

By default, Workflow and web return command line arguments from Alfred and text/decoded JSON data re-
spectively as NFC-normalized Unicode strings.

This is the default for Python. You can change this via the normalization keyword to Workflow (this will,
however, not affect web, which always returns NFC-encoded Unicode strings).

If your workflow works with data from the system (via subprocess, os.listdir() etc.), you should proba-
bly be NFC-normalizing those strings or changing the default normalization to NFD, which is (more or less) what
OS X uses. Workflow.decode() can help with this.

Unfortunately, there is no bulletproof solution, as the query from Alfred can have different normalization forms.

If you pass a Unicode string to Workflow.decode(), it will be normalized using the form passed in the
normalization argument to Workflow.decode() or to Workflow on instantiation.

If you pass an encoded string, it will be decoded to Unicode with the encoding passed in the encoding argu-
ment to Workflow.decode() or the input_encoding argument to Workflow on instantiation and then
normalized as above.

Other Gotchas

Well, only one big gotcha. Namely, your shell probably has a sensible encoding (i.e. UTF-8) set via the LANG
environmental variable (execute echo $LANG to check). Although this won’t affect Python 2’s auto-promotion
of encoded strings (str objects) to Unicode (it always uses ASCII), it does affect the printing of Unicode strings,
so using print()may work perfectly in your shell where the environmental encoding is UTF-8 but not in Alfred,
where encoding is ASCII by default.

Be sure to print Unicode strings with print(my_unicode_string.encode(’utf-8’)) (e.g. when pass-
ing an argument to an Open URL Action or Post Notification Output)!

Further information

If you’re unfamiliar with using Unicode in Python, have a look at the official Python Unicode HOWTO.

66 Chapter 5. User Manual

http://docs.python.org/2.7/library/subprocess.html#module-subprocess
http://docs.python.org/2.7/library/os.html#os.listdir
http://docs.python.org/2.7/library/functions.html#print
https://docs.python.org/2/howto/unicode.html

CHAPTER 6

API documentation

Documetation of the Alfred-Workflow APIs generated from the source code. A handy reference if (like me) you
sometimes forget parameter names.

6.1 Alfred-Workflow API

This API documentation describes how Alfred-Workflow is put together.

See User Manual for documentation focussed on performing specific tasks.

6.1.1 The Workflow Object

The Workflow object is the main interface to this library.

See Workflow setup and skeleton in the User Manual for an example of how to set up your Python script to best
utilise the Workflow object.

class workflow.workflow.Workflow(default_settings=None, update_settings=None,
input_encoding=u’utf-8’, normalization=u’NFC’, cap-
ture_args=True, libraries=None, help_url=None)

Create new Workflow instance.

Parameters

• default_settings (dict) – default workflow settings. If no settings file exists,
Workflow.settings will be pre-populated with default_settings.

• update_settings (dict) – settings for updating your workflow from GitHub.
This must be a dict that contains github_slug and version keys.
github_slug is of the form username/repo and version must correspond to
the tag of a release. See Self-Updating for more information.

• input_encoding (unicode) – encoding of command line arguments

• normalization (unicode) – normalisation to apply to CLI args. See
Workflow.decode() for more details.

• capture_args (Boolean) – capture and act on workflow:* arguments. See
Magic arguments for details.

• libraries (tuple or list) – sequence of paths to directories containing libraries.
These paths will be prepended to sys.path.

• help_url (unicode or str) – URL to webpage where a user can ask for help
with the workflow, report bugs, etc. This could be the GitHub repo or a page on Al-
fredForum.com. If your workflow throws an error, this URL will be displayed in the
log and Alfred’s debugger. It can also be opened directly in a web browser with the
workflow:help magic argument.

67

http://docs.python.org/2.7/library/stdtypes.html#dict
http://docs.python.org/2.7/library/stdtypes.html#dict
http://docs.python.org/2.7/library/stdtypes.html#dict
http://docs.python.org/2.7/library/functions.html#list
http://docs.python.org/2.7/library/functions.html#str

Alfred-Workflow Documentation, Release 1.13

add_item(title, subtitle=u’‘, modifier_subtitles=None, arg=None, autocomplete=None,
valid=False, uid=None, icon=None, icontype=None, type=None, largetext=None,
copytext=None)

Add an item to be output to Alfred

Parameters

• title (unicode) – Title shown in Alfred

• subtitle (unicode) – Subtitle shown in Alfred

• modifier_subtitles (dict) – Subtitles shown when modifier (CMD, OPT
etc.) is pressed. Use a dict with the lowercase keys cmd, ctrl, shift, alt
and fn

• arg (unicode) – Argument passed by Alfred as {query} when item is actioned

• autocomplete (unicode) – Text expanded in Alfred when item is TABbed

• valid (Boolean) – Whether or not item can be actioned

• uid (unicode) – Used by Alfred to remember/sort items

• icon (unicode) – Filename of icon to use

• icontype (unicode) – Type of icon. Must be one of None , ’filetype’
or ’fileicon’. Use ’filetype’ when icon is a filetype such as
’public.folder’. Use ’fileicon’ when you wish to use the icon of
the file specified as icon, e.g. icon=’/Applications/Safari.app’,
icontype=’fileicon’. Leave as None if icon points to an actual icon file.

• type (unicode) – Result type. Currently only ’file’ is supported (by Alfred).
This will tell Alfred to enable file actions for this item.

• largetext (unicode) – Text to be displayed in Alfred’s large text box if user
presses CMD+L on item.

• copytext (unicode) – Text to be copied to pasteboard if user presses CMD+C on
item.

Returns Item instance

See the Script Filter Results and the XML Format section of the documentation for a detailed descrip-
tion of what the various parameters do and how they interact with one another.

See System icons for a list of the supported system icons.

Note: Although this method returns an Item instance, you don’t need to hold onto it or worry
about it. All generated Item instances are also collected internally and sent to Alfred when
send_feedback() is called.

The generated Item is only returned in case you want to edit it or do something with it other than
send it to Alfred.

alfred_env
Alfred’s environmental variables minus the alfred_ prefix.

New in version 1.7.

The variables Alfred 2.4+ exports are:

68 Chapter 6. API documentation

Alfred-Workflow Documentation, Release 1.13

Variable Description
al-
fred_preferences

Path to Alfred.alfredpreferences (where your workflows and settings are stored).

al-
fred_preferences_localhash

Machine-specific preferences are stored in
Alfred.alfredpreferences/preferences/local/<hash> (see
alfred_preferences above for the path to
Alfred.alfredpreferences)

alfred_theme ID of selected theme
al-
fred_theme_background

Background colour of selected theme in format rgba(r,g,b,a)

al-
fred_theme_subtext

Show result subtext. 0 = Always, 1 = Alternative actions only, 2 = Selected
result only, 3 = Never

al-
fred_version

Alfred version number, e.g. ’2.4’

al-
fred_version_build

Alfred build number, e.g. 277

al-
fred_workflow_bundleid

Bundle ID, e.g. net.deanishe.alfred-mailto

al-
fred_workflow_cache

Path to workflow’s cache directory

al-
fred_workflow_data

Path to workflow’s data directory

al-
fred_workflow_name

Name of current workflow

al-
fred_workflow_uid

UID of workflow

Note: all values are Unicode strings except version_build and theme_subtext, which are
integers.

Returns dict of Alfred’s environmental variables without the alfred_ prefix, e.g.
preferences, workflow_data.

args
Return command line args as normalised unicode.

Args are decoded and normalised via decode().

The encoding and normalisation are the input_encoding and normalization arguments
passed to Workflow (UTF-8 and NFC are the defaults).

If Workflow is called with capture_args=True (the default), Workflow will look for certain
workflow:* args and, if found, perform the corresponding actions and exit the workflow.

See Magic arguments for details.

bundleid
Workflow bundle ID from environmental vars or info.plist.

Returns bundle ID

Return type unicode

cache_data(name, data)
Save data to cache under name.

If data is None, the corresponding cache file will be deleted.

Parameters

• name – name of datastore

• data – data to store. This may be any object supported by the cache serializer

cache_serializer
Name of default cache serializer.

6.1. Alfred-Workflow API 69

Alfred-Workflow Documentation, Release 1.13

New in version 1.8.

This serializer is used by cache_data() and cached_data()

See SerializerManager for details.

Returns serializer name

Return type unicode

cached_data(name, data_func=None, max_age=60)
Retrieve data from cache or re-generate and re-cache data if stale/non-existant. If max_age is 0,
return cached data no matter how old.

Parameters

• name – name of datastore

• data_func (callable) – function to (re-)generate data.

• max_age (int) – maximum age of cached data in seconds

Returns cached data, return value of data_func or None if data_func is not set

cached_data_age(name)
Return age of data cached at name in seconds or 0 if cache doesn’t exist

Parameters name (unicode) – name of datastore

Returns age of datastore in seconds

Return type int

cached_data_fresh(name, max_age)
Is data cached at name less than max_age old?

Parameters

• name – name of datastore

• max_age (int) – maximum age of data in seconds

Returns True if data is less than max_age old, else False

cachedir
Path to workflow’s cache directory.

The cache directory is a subdirectory of Alfred’s own cache directory in ~/Library/Caches. The
full path is:

~/Library/Caches/com.runningwithcrayons.Alfred-2/Workflow
Data/<bundle id>

Returns full path to workflow’s cache directory

Return type unicode

cachefile(filename)
Return full path to filename within your workflow’s cache directory .

Parameters filename (unicode) – basename of file

Returns full path to file within cache directory

Return type unicode

check_update(force=False)
Call update script if it’s time to check for a new release

New in version 1.9.

The update script will be run in the background, so it won’t interfere in the execution of your workflow.

70 Chapter 6. API documentation

Alfred-Workflow Documentation, Release 1.13

See Self-updating in the User Manual for detailed information on how to enable your workflow to
update itself.

Parameters force (Boolean) – Force update check

clear_cache(filter_func=<function <lambda>>)
Delete all files in workflow’s cachedir.

Parameters filter_func (callable) – Callable to determine whether a file should
be deleted or not. filter_func is called with the filename of each file in the data
directory. If it returns True, the file will be deleted. By default, all files will be deleted.

clear_data(filter_func=<function <lambda>>)
Delete all files in workflow’s datadir.

Parameters filter_func (callable) – Callable to determine whether a file should
be deleted or not. filter_func is called with the filename of each file in the data
directory. If it returns True, the file will be deleted. By default, all files will be deleted.

clear_settings()
Delete workflow’s settings_path.

data_serializer
Name of default data serializer.

New in version 1.8.

This serializer is used by store_data() and stored_data()

See SerializerManager for details.

Returns serializer name

Return type unicode

datadir
Path to workflow’s data directory.

The data directory is a subdirectory of Alfred’s own data directory in ~/Library/Application
Support. The full path is:

~/Library/Application Support/Alfred 2/Workflow Data/<bundle id>

Returns full path to workflow data directory

Return type unicode

datafile(filename)
Return full path to filename within your workflow’s data directory .

Parameters filename (unicode) – basename of file

Returns full path to file within data directory

Return type unicode

decode(text, encoding=None, normalization=None)
Return text as normalised unicode.

If encoding and/or normalization is None, the input_encoding‘‘and
‘‘normalization parameters passed to Workflow are used.

Parameters

• text (encoded or Unicode string. If text is already a Unicode string, it will only
be normalised.) – string

• encoding (unicode or None) – The text encoding to use to decode text to
Unicode.

• normalization (unicode or None) – The nomalisation form to apply to text.

6.1. Alfred-Workflow API 71

Alfred-Workflow Documentation, Release 1.13

Returns decoded and normalised unicode

Workflow uses “NFC” normalisation by default. This is the standard for Python and will work well
with data from the web (via web or json).

OS X, on the other hand, uses “NFD” normalisation (nearly), so data coming from the system (e.g.
via subprocess or os.listdir()/os.path) may not match. You should either normalise this
data, too, or change the default normalisation used by Workflow .

delete_password(account, service=None)
Delete the password stored at service/account. Raises PasswordNotFound if account is
unknown.

Parameters

• account (unicode) – name of the account the password is for, e.g. “Pinboard”

• service (unicode) – Name of the service. By default, this is the workflow’s
bundle ID

dumbify_punctuation(text)
Convert non-ASCII punctuation to closest ASCII equivalent.

This method replaces “smart” quotes and n- or m-dashes with their workaday ASCII equivalents. This
method is currently not used internally, but exists as a helper method for workflow authors.

Parameters text (unicode) – text to convert

Returns text with only ASCII punctuation

Return type unicode

filter(query, items, key=<function <lambda>>, ascending=False, include_score=False,
min_score=0, max_results=0, match_on=127, fold_diacritics=True)

Fuzzy search filter. Returns list of items that match query.

query is case-insensitive. Any item that does not contain the entirety of query is rejected.

Warning: If query is an empty string or contains only whitespace, a ValueError will be
raised.

Parameters

• query (unicode) – query to test items against

• items (list or tuple) – iterable of items to test

• key (callable) – function to get comparison key from items. Must return a
unicode string. The default simply returns the item.

• ascending (Boolean) – set to True to get worst matches first

• include_score (Boolean) – Useful for debugging the scoring algorithm. If
True, results will be a list of tuples (item, score, rule).

• min_score (int) – If non-zero, ignore results with a score lower than this.

• max_results (int) – If non-zero, prune results list to this length.

• match_on (int) – Filter option flags. Bitwise-combined list of MATCH_* constants
(see below).

• fold_diacritics (Boolean) – Convert search keys to ASCII-only characters if
query only contains ASCII characters.

Returns list of items matching query or list of (item, score, rule) tuples if
include_score is True. rule is the MATCH_* rule that matched the item.

Return type list

72 Chapter 6. API documentation

http://docs.python.org/2.7/library/json.html#module-json
http://docs.python.org/2.7/library/subprocess.html#module-subprocess
http://docs.python.org/2.7/library/os.html#os.listdir
http://docs.python.org/2.7/library/os.path.html#module-os.path

Alfred-Workflow Documentation, Release 1.13

Matching rules

By default, filter() uses all of the following flags (i.e. MATCH_ALL). The tests are always run in
the given order:

1.MATCH_STARTSWITH [Item search key startswith] ‘‘query‘‘(case-insensitive).

2.MATCH_CAPITALS [The list of capital letters in item] search key starts with query (query
may be lower-case). E.g., of would match OmniFocus, gc would match Google
Chrome

3.MATCH_ATOM [Search key is split into “atoms” on] non-word characters (.,-,’ etc.). Matches if
query is one of these atoms (case-insensitive).

4.MATCH_INITIALS_STARTSWITH [Initials are the first] characters of the above-described
“atoms” (case-insensitive).

5.MATCH_INITIALS_CONTAIN [query is a substring of] the above-described initials.

6.MATCH_INITIALS : Combination of (4) and (5).

7.MATCH_SUBSTRING [Match if query is a substring] of item search key (case-insensitive).

8.MATCH_ALLCHARS [Matches if all characters in] query appear in item search key in the same
order (case-insensitive).

9.MATCH_ALL : Combination of all the above.

MATCH_ALLCHARS is considerably slower than the other tests and provides much less accurate re-
sults.

Examples:

To ignore MATCH_ALLCHARS (tends to provide the worst matches and is expensive to run), use
match_on=MATCH_ALL ^ MATCH_ALLCHARS.

To match only on capitals, use match_on=MATCH_CAPITALS.

To match only on startswith and substring, use match_on=MATCH_STARTSWITH |
MATCH_SUBSTRING.

Diacritic folding

New in version 1.3.

If fold_diacritics is True (the default), and query contains only ASCII characters, non-
ASCII characters in search keys will be converted to ASCII equivalents (e.g. ü -> u, ß -> ss, é ->
e).

See ASCII_REPLACEMENTS for all replacements.

If query contains non-ASCII characters, search keys will not be altered.

first_run
Return True if it’s the first time this version has run.

New in version 1.9.10.

Raises a ValueError if version isn’t set.

fold_to_ascii(text)
Convert non-ASCII characters to closest ASCII equivalent.

New in version 1.3.

Note: This only works for a subset of European languages.

Parameters text (unicode) – text to convert

Returns text containing only ASCII characters

6.1. Alfred-Workflow API 73

Alfred-Workflow Documentation, Release 1.13

Return type unicode

get_password(account, service=None)
Retrieve the password saved at service/account. Raise PasswordNotFound exception if
password doesn’t exist.

Parameters

• account (unicode) – name of the account the password is for, e.g. “Pinboard”

• service (unicode) – Name of the service. By default, this is the workflow’s
bundle ID

Returns account password

Return type unicode

info
dict of info.plist contents.

item_class
alias of Item

last_version_run
Return version of last version to run (or None)

New in version 1.9.10.

Returns Version instance or None

logfile
Return path to logfile

Returns path to logfile within workflow’s cache directory

Return type unicode

logger
Create and return a logger that logs to both console and a log file.

Use open_log() to open the log file in Console.

Returns an initialised Logger

magic_arguments = None
Mapping of available magic arguments. The built-in magic arguments are registered by default. To
add your own magic arguments (or override built-ins), add a key:value pair where the key is what the
user should enter (prefixed with magic_prefix) and the value is a callable that will be called when
the argument is entered. If you would like to display a message in Alfred, the function should return a
unicode string.

By default, the magic arguments documented here are registered.

magic_prefix = None
The prefix for all magic arguments. Default is workflow:

name
Workflow name from Alfred’s environmental vars or info.plist.

Returns workflow name

Return type unicode

open_cachedir()
Open the workflow’s cachedir in Finder.

open_datadir()
Open the workflow’s datadir in Finder.

open_help()
Open help_url in default browser

74 Chapter 6. API documentation

http://docs.python.org/2.7/library/stdtypes.html#dict
http://docs.python.org/2.7/library/logging.html#logging.Logger

Alfred-Workflow Documentation, Release 1.13

open_log()
Open workflows logfile in standard application (usually Console.app).

open_terminal()
Open a Terminal window at workflow’s workflowdir.

open_workflowdir()
Open the workflow’s workflowdir in Finder.

reset()
Delete settings, cache and data

run(func)
Call func to run your workflow

Parameters func – Callable to call with self (i.e. the Workflow instance) as first
argument.

func will be called with Workflow instance as first argument.

func should be the main entry point to your workflow.

Any exceptions raised will be logged and an error message will be output to Alfred.

save_password(account, password, service=None)
Save account credentials.

If the account exists, the old password will first be deleted (Keychain throws an error otherwise).

If something goes wrong, a KeychainError exception will be raised.

Parameters

• account (unicode) – name of the account the password is for, e.g. “Pinboard”

• password (unicode) – the password to secure

• service (unicode) – Name of the service. By default, this is the workflow’s
bundle ID

send_feedback()
Print stored items to console/Alfred as XML.

set_last_version(version=None)
Set last_version_run to current version

New in version 1.9.10.

Parameters version (Version instance or unicode) – version to store (default is cur-
rent version)

Returns True if version is saved, else False

settings
Return a dictionary subclass that saves itself when changed.

See Settings in the User Manual for more information on how to use settings and important
limitations on what it can do.

Returns Settings instance initialised from the data in JSON file at settings_path
or if that doesn’t exist, with the default_settings dict passed to Workflow on
instantiation.

Return type Settings instance

settings_path
Path to settings file within workflow’s data directory.

Returns path to settings.json file

Return type unicode

6.1. Alfred-Workflow API 75

http://docs.python.org/2.7/library/stdtypes.html#dict

Alfred-Workflow Documentation, Release 1.13

start_update()
Check for update and download and install new workflow file

New in version 1.9.

See Self-updating in the User Manual for detailed information on how to enable your workflow to
update itself.

Returns True if an update is available and will be installed, else False

store_data(name, data, serializer=None)
Save data to data directory.

New in version 1.8.

If data is None, the datastore will be deleted.

Note that the datastore does NOT support mutliple threads.

Parameters

• name – name of datastore

• data – object(s) to store. Note: some serializers can only handled certain types of
data.

• serializer – name of serializer to use. If no serializer is specified, the default will
be used. See SerializerManager for more information.

Returns data in datastore or None

stored_data(name)
Retrieve data from data directory. Returns None if there are no data stored.

New in version 1.8.

Parameters name – name of datastore

update_available
Is an update available?

New in version 1.9.

See Self-updating in the User Manual for detailed information on how to enable your workflow to
update itself.

Returns True if an update is available, else False

version
Return the version of the workflow

New in version 1.9.10.

Get the version from the update_settings dict passed on instantiation or the version file
located in the workflow’s root directory. Return None if neither exist or ValueError if the version
number is invalid (i.e. not semantic).

Returns Version of the workflow (not Alfred-Workflow)

Return type Version object

workflowdir
Path to workflow’s root directory (where info.plist is).

Returns full path to workflow root directory

Return type unicode

workflowfile(filename)
Return full path to filename in workflow’s root dir (where info.plist is).

Parameters filename (unicode) – basename of file

76 Chapter 6. API documentation

Alfred-Workflow Documentation, Release 1.13

Returns full path to file within data directory

Return type unicode

workflow.workflow.atomic_writer(*args, **kwds)
Atomic file writer.

Parameters

• file_path (unicode) – path of file to write to.

• mode (string) – sames as for func:open

New in version 1.12.

Context manager that ensures the file is only written if the write succeeds. The data is first written to a
temporary file.

class workflow.workflow.uninterruptible(func, class_name=u’‘)
Decorator that postpones SIGTERM until wrapped function is complete.

New in version 1.12.

Since version 2.7, Alfred allows Script Filters to be killed. If your workflow is killed in the middle of critical
code (e.g. writing data to disk), this may corrupt your workflow’s data.

Use this decorator to wrap critical functions that must complete. If the script is killed while a wrapped
function is executing, the SIGTERM will be caught and handled after your function has finished executing.

Alfred-Workflow uses this internally to ensure its settings, data and cache writes complete.

Important: This decorator is NOT thread-safe.

class workflow.workflow.KeychainError
Raised by methods Workflow.save_password(), Workflow.get_password() and
Workflow.delete_password() when security CLI app returns an unknown error code.

class workflow.workflow.PasswordNotFound
Raised by method Workflow.get_password() when account is unknown to the Keychain.

class workflow.workflow.PasswordExists
Raised when trying to overwrite an existing account password.

You should never receive this error: it is used internally by the Workflow.save_password() method
to know if it needs to delete the old password first (a Keychain implementation detail).

6.1.2 Fetching Data from the Web

workflow.web provides a simple API for retrieving data from the Web modelled on the excellent requests
library.

The purpose of workflow.web is to cover trivial cases at just 0.5% of the size of requests.

Features

• JSON requests and responses

• Form data submission

• File uploads

• Redirection support

The main API consists of the get() and post() functions and the Response instances they return.

6.1. Alfred-Workflow API 77

http://docs.python.org/2.7/library/string.html#module-string
http://docs.python-requests.org/en/latest/
http://docs.python-requests.org/en/latest/

Alfred-Workflow Documentation, Release 1.13

Warning: As workflow.web is based on Python 2’s standard HTTP libraries, it does not verify SSL
certificates when establishing HTTPS connections.
As a result, you must not use this module for sensitive connections.

If you require certificate verification for HTTPS connections (which you really should), you should use the excel-
lent requests library (upon which the workflow.web API is based) or the command-line tool cURL, which is
installed by default on OS X, instead.

Examples

There are some examples of using workflow.web in other parts of the documentation:

• Writing your Python script in the Tutorial

• Retrieving data from the web in the User Manual

API

get() and post() are wrappers around request(). They all return Response objects.

workflow.web.get(url, params=None, headers=None, cookies=None, auth=None, timeout=60, al-
low_redirects=True)

Initiate a GET request. Arguments as for request().

Returns Response instance

workflow.web.post(url, params=None, data=None, headers=None, cookies=None, files=None,
auth=None, timeout=60, allow_redirects=False)

Initiate a POST request. Arguments as for request().

Returns Response instance

workflow.web.request(method, url, params=None, data=None, headers=None, cookies=None,
files=None, auth=None, timeout=60, allow_redirects=False)

Initiate an HTTP(S) request. Returns Response object.

Parameters

• method (unicode) – ‘GET’ or ‘POST’

• url (unicode) – URL to open

• params (dict) – mapping of URL parameters

• data (dict or str) – mapping of form data {’field_name’: ’value’} or
str

• headers (dict) – HTTP headers

• cookies (dict) – cookies to send to server

• files (dict) – files to upload (see below).

• auth (tuple) – username, password

• timeout (int) – connection timeout limit in seconds

• allow_redirects (Boolean) – follow redirections

Returns Response object

The files argument is a dictionary:

{'fieldname' : { 'filename': 'blah.txt',
'content': '<binary data>',
'mimetype': 'text/plain'}

}

78 Chapter 6. API documentation

http://docs.python-requests.org/en/latest/
http://curl.haxx.se/
http://docs.python.org/2.7/library/stdtypes.html#dict
http://docs.python.org/2.7/library/stdtypes.html#dict
http://docs.python.org/2.7/library/functions.html#str
http://docs.python.org/2.7/library/functions.html#str
http://docs.python.org/2.7/library/stdtypes.html#dict
http://docs.python.org/2.7/library/stdtypes.html#dict
http://docs.python.org/2.7/library/stdtypes.html#dict

Alfred-Workflow Documentation, Release 1.13

•fieldname is the name of the field in the HTML form.

•mimetype is optional. If not provided, mimetypes will be used to guess the mimetype, or
application/octet-stream will be used.

The Response object

class workflow.web.Response(request)
Returned by request() / get() / post() functions.

A simplified version of the Response object in the requests library.

>>> r = request('http://www.google.com')
>>> r.status_code
200
>>> r.encoding
ISO-8859-1
>>> r.content # bytes
<html> ...
>>> r.text # unicode, decoded according to charset in HTTP header/meta tag
u'<html> ...'
>>> r.json() # content parsed as JSON

content
Raw content of response (i.e. bytes)

Returns Body of HTTP response

Return type str

encoding
Text encoding of document or None

Returns str or None

iter_content(chunk_size=4096, decode_unicode=False)
Iterate over response data.

New in version 1.6.

Parameters

• chunk_size (int) – Number of bytes to read into memory

• decode_unicode (Boolean) – Decode to Unicode using detected encoding

Returns iterator

json()
Decode response contents as JSON.

Returns object decoded from JSON

Return type list / dict

raise_for_status()
Raise stored error if one occurred.

error will be instance of urllib2.HTTPError

save_to_path(filepath)
Save retrieved data to file at filepath

Parameters filepath – Path to save retrieved data.

text
Unicode-decoded content of response body.

6.1. Alfred-Workflow API 79

http://docs.python.org/2.7/library/mimetypes.html#module-mimetypes
http://docs.python.org/2.7/library/functions.html#str
http://docs.python.org/2.7/library/functions.html#str
http://docs.python.org/2.7/library/functions.html#list
http://docs.python.org/2.7/library/stdtypes.html#dict
http://docs.python.org/2.7/library/urllib2.html#urllib2.HTTPError

Alfred-Workflow Documentation, Release 1.13

If no encoding can be determined from HTTP headers or the content itself, the encoded response body
will be returned instead.

Returns Body of HTTP response

Return type unicode or str

6.1.3 Background Tasks

New in version 1.4.

Run scripts in the background.

This module allows your workflow to execute longer-running processes, e.g. updating the data cache from a
webservice, in the background, allowing the workflow to remain responsive in Alfred.

For example, if your workflow requires up-to-date exchange rates, you might write a script
update_exchange_rates.py to retrieve the data from the relevant webservice, and call it from your
main workflow script:

1 from workflow import Workflow, ICON_INFO
2 from workflow.background import run_in_background, is_running
3

4 def main(wf):
5 # Is cache over 1 hour old or non-existent?
6 if not wf.cached_data_fresh('exchange-rates', 3600):
7 run_in_background('update',
8 ['/usr/bin/python',
9 wf.workflowfile('update_exchange_rates.py')])

10

11 # Add a notification if the script is running
12 if is_running('update'):
13 wf.add_item('Updating exchange rates...', icon=ICON_INFO)
14

15 # max_age=0 will return the cached data regardless of age
16 exchange_rates = wf.cached_data('exchage-rates', max_age=0)
17

18 # Display (possibly stale) cached data
19 if exchange_rates:
20 for rate in exchange_rates:
21 wf.add_item(rate)
22

23 # Send results to Alfred
24 wf.send_feedback()
25

26 if __name__ == '__main__':
27 wf = Workflow()
28 wf.run(main)

For a working example, see Part 2: A Distribution-Ready Pinboard Workflow.

API

workflow.background.run_in_background(name, args, **kwargs)
Pickle arguments to cache file, then call this script again via subprocess.call().

Parameters

• name (unicode) – name of task

• args – arguments passed as first argument to subprocess.call()

• **kwargs – keyword arguments to subprocess.call()

80 Chapter 6. API documentation

http://docs.python.org/2.7/library/functions.html#str
http://docs.python.org/2.7/library/subprocess.html#subprocess.call
http://docs.python.org/2.7/library/subprocess.html#subprocess.call
http://docs.python.org/2.7/library/subprocess.html#subprocess.call

Alfred-Workflow Documentation, Release 1.13

Returns exit code of sub-process

Return type int

When you call this function, it caches its arguments and then calls background.py in a subprocess. The
Python subprocess will load the cached arguments, fork into the background, and then run the command
you specified.

This function will return as soon as the background.py subprocess has forked, returning the exit code
of that process (i.e. not of the command you’re trying to run).

If that process fails, an error will be written to the log file.

If a process is already running under the same name, this function will return immediately and will not run
the specified command.

workflow.background.is_running(name)
Test whether task is running under name

Parameters name (unicode) – name of task

Returns True if task with name name is running, else False

Return type Boolean

6.1.4 Self-Updating

New in version 1.9.

Add self-updating capabilities to your workflow. It regularly (every day by default) fetches the latest releases from
the specified GitHub repository.

Currently, only updates from GitHub releases are supported.

Note: Alfred-Workflow will check for updates, but will neither install them nor notify the user that an update is
available.

Please see Self-updating in the User Manual for information on how to enable automatic updates in your workflow.

API

Self-updating from GitHub

New in version 1.9.

Note: This module is not intended to be used directly. Automatic updates are controlled by the
update_settings dict passed to Workflow objects.

class workflow.update.Version(vstr)
Bases: object

Mostly semantic versioning

The main difference to proper semantic versioning is that this implementation doesn’t require a minor or
patch version.

match_version()
Match version and pre-release/build information in version strings

tuple
Return version number as a tuple of major, minor, patch, pre-release

workflow.update.build_api_url(slug)
Generate releases URL from GitHub slug

6.1. Alfred-Workflow API 81

https://help.github.com/categories/85/articles
http://docs.python.org/2.7/library/stdtypes.html#dict
http://docs.python.org/2.7/library/functions.html#object

Alfred-Workflow Documentation, Release 1.13

Parameters slug – Repo name in form username/repo

Returns URL to the API endpoint for the repo’s releases

workflow.update.check_update(github_slug, current_version)
Check whether a newer release is available on GitHub

Parameters

• github_slug – username/repo for workflow’s GitHub repo

• current_version (unicode) – the currently installed version of the workflow.
Semantic versioning is required.

Returns True if an update is available, else False

If an update is available, its version number and download URL will be cached.

workflow.update.download_workflow(url)
Download workflow at url to a local temporary file

Parameters url – URL to .alfredworkflow file in GitHub repo

Returns path to downloaded file

workflow.update.get_valid_releases(github_slug)
Return list of all valid releases

Parameters github_slug – username/repo for workflow’s GitHub repo

Returns list of dicts. Each dict has the form {’version’: ’1.1’,
’download_url’: ’http://github.com/...’}

A valid release is one that contains one .alfredworkflow file.

If the GitHub version (i.e. tag) is of the form v1.1, the leading v will be stripped.

workflow.update.install_update(github_slug, current_version)
If a newer release is available, download and install it

Parameters

• github_slug – username/repo for workflow’s GitHub repo

• current_version (unicode) – the currently installed version of the workflow.
Semantic versioning is required.

If an update is available, it will be downloaded and installed.

Returns True if an update is installed, else False

workflow.update.wf()

6.1.5 Serialization

Workflow has several methods for storing persistent data to your workflow’s data and cache directories. By
default these are stored as Python pickle objects using CPickleSerializer (with the file extension
.cpickle).

You may, however, want to serialize your data in a different format, e.g. JSON, to make it user-readable/-editable
or to interface with other software, and the SerializerManager and data storage/caching APIs enable you to
do this.

For more information on how to change the default serializers, specify alternative ones and register new ones, see
Persistent data and Serialization of stored/cached data in the User Manual.

82 Chapter 6. API documentation

http://docs.python.org/2.7/library/stdtypes.html#dict
http://docs.python.org/2.7/library/pickle.html#module-pickle

Alfred-Workflow Documentation, Release 1.13

API

class workflow.workflow.SerializerManager
Contains registered serializers.

New in version 1.8.

A configured instance of this class is available at workflow.manager.

Use register() to register new (or replace existing) serializers, which you can specify by name when
calling Workflow data storage methods.

See Serialization of stored/cached data and Persistent data for further information.

register(name, serializer)
Register serializer object under name.

Raises AttributeError if serializer in invalid.

Note: name will be used as the file extension of the saved files.

Parameters

• name (unicode or str) – Name to register serializer under

• serializer – object with load() and dump() methods

serializer(name)
Return serializer object for name or None if no such serializer is registered

Parameters name (unicode or str) – Name of serializer to return

Returns serializer object or None

serializers
Return names of registered serializers

unregister(name)
Remove registered serializer with name

Raises a ValueError if there is no such registered serializer.

Parameters name (unicode or str) – Name of serializer to remove

Returns serializer object

class workflow.workflow.JSONSerializer
Wrapper around json. Sets indent and encoding.

New in version 1.8.

Use this serializer if you need readable data files. JSON doesn’t support Python objects as well as
cPickle/pickle, so be careful which data you try to serialize as JSON.

classmethod dump(obj, file_obj)
Serialize object obj to open JSON file.

New in version 1.8.

Parameters

• obj (JSON-serializable data structure) – Python object to serialize

• file_obj (file object) – file handle

classmethod load(file_obj)
Load serialized object from open JSON file.

New in version 1.8.

6.1. Alfred-Workflow API 83

http://docs.python.org/2.7/library/json.html#module-json

Alfred-Workflow Documentation, Release 1.13

Parameters file_obj (file object) – file handle

Returns object loaded from JSON file

Return type object

class workflow.workflow.CPickleSerializer
Wrapper around cPickle. Sets protocol.

New in version 1.8.

This is the default serializer and the best combination of speed and flexibility.

classmethod dump(obj, file_obj)
Serialize object obj to open pickle file.

New in version 1.8.

Parameters

• obj (Python object) – Python object to serialize

• file_obj (file object) – file handle

classmethod load(file_obj)
Load serialized object from open pickle file.

New in version 1.8.

Parameters file_obj (file object) – file handle

Returns object loaded from pickle file

Return type object

class workflow.workflow.PickleSerializer
Wrapper around pickle. Sets protocol.

New in version 1.8.

Use this serializer if you need to add custom pickling.

classmethod dump(obj, file_obj)
Serialize object obj to open pickle file.

New in version 1.8.

Parameters

• obj (Python object) – Python object to serialize

• file_obj (file object) – file handle

classmethod load(file_obj)
Load serialized object from open pickle file.

New in version 1.8.

Parameters file_obj (file object) – file handle

Returns object loaded from pickle file

Return type object

6.1.6 Index

All documented, public Alfred-Workflow classes and methods.

84 Chapter 6. API documentation

http://docs.python.org/2.7/library/functions.html#object
http://docs.python.org/2.7/library/pickle.html#module-cPickle
http://docs.python.org/2.7/library/functions.html#object
http://docs.python.org/2.7/library/pickle.html#module-pickle
http://docs.python.org/2.7/library/functions.html#object

CHAPTER 7

Script Filter results and the XML format

An in-depth look at Alfred’s XML format, the many parameters accepted by Workflow.add_item() and how
they interact with one another.

Note: This should also serve as a decent reference to Alfred’s XML format for folks who aren’t using Alfred-
Workflow. The official Alfred 2 XML docs have recently seen a massive update, but historically haven’t been very
up-to-date.

7.1 Script Filter Results and the XML Format

Note: This document is valid as of version 2.5 of Alfred and 1.8.5 of Alfred-Workflow.

Alfred’s Script Filters are its most powerful workflow API and a main focus of Alfred-Workflow. Script Filters
work by receiving a {query} from Alfred and returning a list of results as XML.

To build this list of results use the Workflow.add_item() method, and then
Workflow.send_feedback() to send the results back to Alfred.

This document is an attempt to explain how the many options available in the XML format and
Workflow.add_item()‘s arguments work.

Danger: As Script Filters use STDOUT to send their results to Alfred as XML, you must not print() or
log any output to STDOUT or it will break the XML, and Alfred will show no results.

7.1.1 XML format / available parameters

Warning: If you’re not using Alfred-Workflow to generate your Script Filter’s output, you should use a real
XML library to do so. XML is a lot more finicky that it looks, and it’s fairly easy to create invalid XML.
Unless your XML is hard-coded (i.e. never changes), it’s much safer and more reliable to use a proper XML
library than to generate your own XML.

This is a valid and complete XML result list containing just one result with all possible options.
Workflow.send_feedback() will print something much like this to STDOUT when called (though it won’t
be as pretty as it will all be on one line).

1 <?xml version="1.0" encoding="UTF-8"?>
2 <items>
3 <item uid="home" valid="YES" autocomplete="Home Folder" type="file">
4 <title>Home Folder</title>
5 <subtitle>Home folder ~/</subtitle>
6 <subtitle mod="shift">Subtext when shift is pressed</subtitle>

85

http://support.alfredapp.com/workflows:config:inputs-script-filter#xmloutput
http://docs.python.org/2.7/library/functions.html#print

Alfred-Workflow Documentation, Release 1.13

7 <subtitle mod="fn">Subtext when fn is pressed</subtitle>
8 <subtitle mod="ctrl">Subtext when ctrl is pressed</subtitle>
9 <subtitle mod="alt">Subtext when alt is pressed</subtitle>

10 <subtitle mod="cmd">Subtext when cmd is pressed</subtitle>
11 <text type="copy">Text when copying</text>
12 <text type="largetype">Text for LargeType</text>
13 <icon type="fileicon">~/</icon>
14 <arg>~/</arg>
15 </item>
16 </items>

The first line is the standard XML declaration. If you’re generating your own XML, you should probably use
a declaration exactly as shown here and ensure your XML is encoded as UTF-8 text. If you’re using Alfred-
Workflow, the XML declaration will be generated for you and it will ensure that the XML output is UTF-8-
encoded.

The root element must be <items> (lines 2 and 16).

The <items> element contains one or more <item> elements.

To generate the above XML with Alfred-Workflow you would use:

1 from workflow import Workflow
2

3 wf = Workflow()
4

5 wf.add_item(u'Home Folder', # title
6 u'Home folder ~/', # subtitle
7 modifier_subtitles={
8 u'shift': u'Subtext when shift is pressed',
9 u'fn': u'Subtext when fn is pressed',

10 u'ctrl': u'Subtext when ctrl is pressed',
11 u'alt': u'Subtext when alt is pressed',
12 u'cmd': u'Subtext when cmd is pressed'
13 },
14 arg=u'~/',
15 autocomplete=u'Home Folder',
16 valid=True,
17 uid=u'home',
18 icon=u'~/',
19 icontype=u'fileicon',
20 type=u'file',
21 largetext=u'Text for LargeType',
22 copytext=u'Text when copying')
23

24 # Print XML to STDOUT
25 wf.send_feedback()

7.1.2 Basic example

A minimal, valid result looks like this:

<item>
<title>My super title</title>

</item>

Generated with:

wf.add_item(u'My super title')

This will show a result in Alfred with Alfred’s blank workflow icon and “My super title” as its text.

Everything else is optional, but some parameters don’t make much sense without other complementary parameters.
Let’s have a look.

86 Chapter 7. Script Filter results and the XML format

Alfred-Workflow Documentation, Release 1.13

7.1.3 Item parameters

• title

• subtitle

• autocomplete

• arg

• valid

• uid

• type

• copy text

• large text

• icon

title

This is the large text shown for each result in Alfred’s results list.

Pass to Workflow.add_item() as the title argument or the first unnamed argument. This is the only
required argument and must be unicode:

wf.add_item(u'My title'[, ...])

or

wf.add_item(title=u'My title'[, ...])

subtitle

This is the smaller text shown under each result in Alfred’s results list.

Important: Remember that users can turn off subtitles in Alfred’s settings. If you don’t want to confuse mini-
malists, don’t relegate essential information to the subtitle. On the other hand, you could argue that users who
think turning off subtitles is okay deserve what they get. . .

Pass to Workflow.add_item() as the subtitle argument or the second unnamed argument (the first,
title, is required and must therefore be present.

It’s also possible to specify custom subtitles to be shown when a result is selected and the user presses one of the
modifier keys (cmd, opt, ctrl, shift, fn).

These are specified in the XML file as additional <subtitle> elements with mod="<key>" attributes (see
lines 6–10 in the example XML).

In Alfred-Workflow, you can set modifier-specific subtitles with the modifier_subtitles argument to
Workflow.add_item(), which must be a dictionary with some or all of the keys alt, cmd, ctrl, fn,
shift and the corresponding values set to the unicode subtitles to be shown when the modifiers are pressed
(see lines 7–13 of the example code).

autocomplete

If the user presses TAB on a result, the query currently shown in Alfred’s query box will be expanded to the
autocomplete value of the selected result.

If the user presses ENTER on a result with valid set to no, Alfred will expand the query as if the user had pressed
TAB.

7.1. Script Filter Results and the XML Format 87

Alfred-Workflow Documentation, Release 1.13

Pass to Workflow.add_item() as the autocomplete argument. Must be unicode.

When a user autocompletes a result with TAB, Alfred will run the Script Filter again with the new query.

If no autocomplete parameter is specified, using TAB on a result will have no effect.

arg

Pass to Workflow.add_item() as the arg argument. Must be unicode.

This is the “value” of the result that will be passed by Alfred as {query} to the Action(s) or Output(s) your Script
Filter is connected to when the result is “actioned” (i.e. by selecting it and hitting ENTER or using CMD+NUM).

Additionally, if you press CMD+C on a result in Alfred, arg will be copied to the pasteboard (unless you have
set copy text for the item).

Other than being copyable, setting arg doesn’t make great deal of sense unless the item is also valid. An exception
isif the item’s type is file. In this case, a user can still use File Actions on an item, even if it is not valid.

Note: arg may also be specified as an attribute of the <item> element, but specifying it as a child element of
<item> is more flexible: you can include newlines within an element, but not within an attribute.

valid

Passed to Workflow.add_item() as the valid argument. Must be True or False (the default).

In the XML file, valid is an attribute on the <item> element and must have the value of either YES or NO:

1 <item valid="YES">
2 ...
3 </item>
4 <item valid="NO">
5 ...
6 </item>

valid determines whether a user can action a result (i.e with ENTER or CMD+NUM) in Alfred’s results list or not
("YES"/True meaning they can). If a result has the type file, users can still perform File Actions on it (if arg
is set to a valid filepath).

Specifying valid=True/valid="YES" has no effect if arg isn’t set.

uid

Pass to Workflow.add_item() as the uid argument. Must be unicode.

Alfred uses the uid to uniquely identify a result and apply its “knowledge” to it. That is to say, if (and only if) a
user hits ENTER on a result with a uid, Alfred will associate that result (well, its uid) with its current query and
prioritise that result for the same query in the future.

As a result, in most situations you should ensure that a particular item always has the same uid. In practice,
setting uid to the same value as arg is often a good choice.

If you omit the uid, Alfred will show results in the order in which they appear in the XML file (the order in which
you add them with Workflow.add_item()).

type

The type of the result. Currently, only file and file:skipcheck are supported.

Pass to Workflow.add_item() as the type argument. Should be unicode. Currently, the only allowed
value is file.

88 Chapter 7. Script Filter results and the XML format

Alfred-Workflow Documentation, Release 1.13

If the type of a result is set to file (the only value currently supported by Alfred), it will enable users to
“action” the item, as in Alfred’s file browser, and show Alfred’s File Actions (Open, Open with..., Reveal
in Finder etc.) using the default keyboard shortcut set in Alfred Preferences > File Search >
Actions > Show Actions.

If type is set to file:skipcheck, Alfred won’t test to see if the file specified as arg actually exists. This will
save a tiny bit of time if you’re sure the file exists.

For File Actions to work, arg must be set to a valid filepath, but it is not necessary for the item to be valid.

copy text

Text that will be copied to the pasteboard if a user presses CMD+C on a result.

Pass to Workflow.add_item() as the copytext argument. Must be unicode.

Set using <text type="copy">Copy text goes here</text> in XML.

If copytext is set, when the user presses CMD+C, this will be copied to the pasteboard and Alfred’s window
will close. If copytext is not set, the selected result’s arg value will be copied to the pasteboard and Alfred’s
window will close. If neither is set, nothing will be copied to the pasteboard and Alfred’s window will close.

large text

Text that will be displayed in Alfred’s Large Type pop-up if a user presses CMD+L on a result.

Pass to Workflow.add_item() as the largetext argument. Must be unicode.

Set using <text type="largetype">Large text goes here</text> in XML.

If largetext is not set, when the user presses CMD+L on a result, Alfred will display the current query in its
Large Type pop-up.

icon

There are three different kinds of icon you can tell Alfred to use. Use the type attribute of the <icon> XML
element or the icontype argument to Alfred.add_item() to define which type of icon you want.

Image files

This is the default. Simply pass the filename or filepath of an image file:

<icon>icon.png</icon>

or:

Workflow.add_item(..., icon=u'icon.png')

Relative paths will be interpreted by Alfred as relative to the root of your workflow directory, so icon.png will
be your workflow’s own icon, icons/github.png is the file github.png in the icons subdirectory of
your workflow etc.

You can pass paths to PNG or ICNS files. If you’re using PNG, you should try to make them square and ideally
256 px wide/high. Anything bigger and Alfred will have to resize the icon; smaller and it won’t look so good on
a Retina screen.

7.1. Script Filter Results and the XML Format 89

Alfred-Workflow Documentation, Release 1.13

File icons

Alternatively, you can tell Alfred to use the icon of a file:

<icon type="fileicon">/path/to/some/file.pdf</icon>

or:

Workflow.add_item(..., icon=u'/path/to/some/file.pdf',
icontype=u'fileicon')

This is great if your workflow lists the user’s own files, and makes your Script Filter work like Alfred’s File
Browser or File Filters in that by passing the file’s path as the icon, Alfred will show the appropriate icon for that
file.

If you have set a custom icon for, e.g., your Downloads folder, this custom icon will be shown. In the case of
media files that have cover art, e.g. audio files, movies, ebooks, comics etc., any cover art will not be shown, but
rather the standard icon for the appropriate filetype.

Filetype icons

Finally, you can tell Alfred to use the icon for a specific filetype by specifying a UTI as the value to icon and
filetype as the type:

<icon type="filetype">public.html</icon>

or:

Workflow.add_item(..., icon=u'public.html', icontype=u'filetype')

This will show the icon for HTML pages, which will be different depending on which browser you have set as the
default.

filetype icons are useful if your Script Filter deals with files and filetypes but you don’t have a specific filepath
to use as a fileicon.

Tip: If you need to find the UTI for a filetype, Alfred can help you.

Add a File Filter to a workflow, and drag a file of the type you’re interested in into the File Types list in the Basic
Setup tab. Alfred will show the corresponding UTI in the list (in this screenshot, I dragged a .py file into the list):

90 Chapter 7. Script Filter results and the XML format

http://www.escape.gr/manuals/qdrop/UTI.html

Alfred-Workflow Documentation, Release 1.13

You can also find the UTI of a file (along with much of its other metadata) by running mdls
/path/to/the/file in Terminal.

7.1. Script Filter Results and the XML Format 91

Alfred-Workflow Documentation, Release 1.13

92 Chapter 7. Script Filter results and the XML format

CHAPTER 8

Workflows using Alfred-Workflow

This is a list of some of the workflows based on Alfred-Workflow.

8.1 Workflows using Alfred-Workflow

Here are some workflows that are made with Alfred-Workflow. Have a poke around in their repos for inspiration.

8.1.1 Adding your own workflow to the list

If you’d like your own workflow added to the list, please see the corresponding section in the GitHub README.

• Alfred Backblaze (GitHub repo) by XedMada (on GitHub). Pause and Start Backblaze online backups.

• Alfred Dependency Bundler Demo (Python) (GitHub repo) by deanishe (on GitHub). Demonstration on
how to use the Alfred Bundler in Python.

• Alfred Soundboard by Steffen. A soundboard for alfred at your fingertips.

• AppScripts (GitHub repo) by deanishe (on GitHub). List, search and run/open AppleScripts for the active
application.

• Base Converter (GitHub repo) by ahalbert (on GitHub). Convert arbitrary bases(up to base 32) in Alfred 2
and copy them to the clipboard.

• BeautifulRatio (GitHub repo) by yusuga (on GitHub). This workflow calculates the Golden ratio and Silver
ratio.

• Better IMDB search by frankspin. Search IMDB for movies and see results inside of Alfred.

• BibQuery (GitHub repo) by hackademic (on GitHub). Search BibDesk from the comfort of your keyboard.

• Blur by Tyler Eich. Set Alfred’s background blur radius.

• Calendar (GitHub repo) by owenwater (on GitHub). Displays a monthly calendar with Alfred Workflow.

• Code Case by dfay. Case Converter for Code.

• Codebox (GitHub repo) by danielecook (on GitHub). Search codebox snippets.

• Continuity Support by dmarshall. Enables calling and messaging via contacts or number input.

• Convert (GitHub repo) by deanishe (on GitHub). Convert between different units. No Internet connection
required.

• Date Calculator (GitHub repo) by MuppetGate (on GitHub). A basic date calculator.

• Digital Ocean status (GitHub repo) by frankspin (on GitHub). Control your Digital Ocean droplets.

• Display Brightness (GitHub repo) by fniephaus (on GitHub). Adjust your display’s brightness with Alfred.

93

https://github.com/deanishe/alfred-workflow#contributing
http://www.packal.org/workflow/alfred-backblaze
https://github.com/XedMada/alfred-backblaze
http://www.packal.org/users/xedmada
https://github.com/XedMada/
http://www.packal.org/workflow/alfred-dependency-bundler-demo-python
https://github.com/deanishe/alfred-bundler-python-demo
http://www.packal.org/users/deanishe
https://github.com/deanishe/
http://www.packal.org/workflow/alfred-soundboard
http://www.packal.org/users/steffen
http://www.packal.org/workflow/appscripts
https://github.com/deanishe/alfred-appscripts
http://www.packal.org/users/deanishe
https://github.com/deanishe/
http://www.packal.org/workflow/base-converter
https://github.com/ahalbert/alfred-baseconverter
http://www.packal.org/users/ahalbert
https://github.com/ahalbert/
http://www.packal.org/workflow/beautifulratio
https://github.com/yusuga/alfred-beautifulratio-workflow
http://www.packal.org/users/yusuga
https://github.com/yusuga/
http://www.packal.org/workflow/better-imdb-search
http://www.packal.org/users/frankspin
http://www.packal.org/workflow/bibquery
https://github.com/smargh/alfred_bibquery
http://www.packal.org/users/hackademic
https://github.com/smargh/
http://www.packal.org/workflow/blur
http://www.packal.org/users/tyler-eich
http://www.packal.org/workflow/calendar
https://github.com/owenwater/alfred-cal
http://www.packal.org/users/owenwater
https://github.com/owenwater/
http://www.packal.org/workflow/code-case
http://www.packal.org/users/dfay
http://www.packal.org/workflow/codebox
https://github.com/danielecook/codebox-alfred
http://www.packal.org/users/danielecook
https://github.com/danielecook/
http://www.packal.org/workflow/continuity-support
http://www.packal.org/users/dmarshall
http://www.packal.org/workflow/convert
https://github.com/deanishe/alfred-convert
http://www.packal.org/users/deanishe
https://github.com/deanishe/
http://www.packal.org/workflow/date-calculator
https://github.com/MuppetGate/Alfred-Workflows-DateCalculator
http://www.packal.org/users/muppetgate
https://github.com/MuppetGate/
http://www.packal.org/workflow/digital-ocean-status
https://github.com/fspinillo/alfred-digital-ocean
http://www.packal.org/users/frankspin
https://github.com/fspinillo/
http://www.packal.org/workflow/display-brightness
https://github.com/fniephaus/alfred-brightness
http://www.packal.org/users/fniephaus
https://github.com/fniephaus/

Alfred-Workflow Documentation, Release 1.13

• Dropbox Client for Alfred (GitHub repo) by fniephaus (on GitHub). Access multiple Dropbox accounts
with Alfred.

• Duden Search (GitHub repo) by deanishe (on GitHub). Search duden.de German dictionary (with auto-
suggest).

• Fabric for Alfred by fniephaus. Quickly execute Fabric tasks.

• Fakeum (GitHub repo) by deanishe (on GitHub). Generate fake test data in Alfred.

• Forvo (GitHub repo) by owenwater (on GitHub). A pronunciation workflow based on Forvo.com.

• Fuzzy Folders (GitHub repo) by deanishe (on GitHub). Fuzzy search across folder subtrees.

• Genymotion (GitHub repo) by yakiyama (on GitHub). Start emulator instantly.

• Git Repos (GitHub repo) by deanishe (on GitHub). Browse, search and open Git repositories from within
Alfred.

• Glosbe Translation by deanishe. Translate text using Glosbe.com.

• Gmail Client for Alfred (GitHub repo) by fniephaus (on GitHub). Manage your Gmail inbox with Alfred.

• Google Drive (GitHub repo) by azai91 (on GitHub). Browse, search and open Google Drive files from
within Alfred.

• HackerNews for Alfred (GitHub repo) by fniephaus (on GitHub). Read Hacker News with Alfred.

• HGNC Search (GitHub repo) by danielecook (on GitHub). Search for human genes.

• Homebrew and Cask for Alfred (GitHub repo) by fniephaus (on GitHub). Easily control Homebrew and
Cask with Alfred.

• IME (GitHub repo) by owenwater (on GitHub). A Input method workflow based on Google Input Tools.

• iOS Simulator (GitHub repo) by jfro (on GitHub). Workflow for finding simulator app data folders, erasing
apps and more.

• IPython Notebooks (GitHub repo) by nkeim (on GitHub). Search notebook titles on your IPython notebook
server.

• Jenkins (GitHub repo) by Amwam (on GitHub). Show and search through jobs on Jenkins.

• Julian Date calculator (GitHub repo) by Tam-Lin (on GitHub). Converts dates to/from Julian dates, as well
as some date math.

• KA Torrents by hackademic. Search and download torrents from kickass.so.

• Laser SSH by paperElectron. Choose SSH connection from filterable list.

• LastPass Vault Manager (GitHub repo) by bachya (on GitHub). A workflow to interact with a LastPass
vault.

• LibGen (GitHub repo) by hackademic (on GitHub). Search and Download pdfs and ebooks from Library
Genesis.

• MailTo (GitHub repo) by deanishe (on GitHub). Send mail to contacts and groups from your Address Book.

• Movie and TV Show Search (GitHub repo) by tone (on GitHub). Search for movies and tv shows to find
ratings from a few sites.

• Network Location (GitHub repo) by deanishe (on GitHub). List, filter and activate network locations from
within Alfred.

• Packal Workflow Search (GitHub repo) by deanishe (on GitHub). Search Packal.org from the comfort of
Alfred.

• Pandoctor (GitHub repo) by hackademic (on GitHub). An Alfred GUI for Pandoc.

• Parsers (GitHub repo) by hackademic (on GitHub). Greek and Latin parsers.

• pass (GitHub repo) by mwest (on GitHub). Provide a minimal wrapper over the pass password manager
(passwordstore.org).

94 Chapter 8. Workflows using Alfred-Workflow

http://www.packal.org/workflow/dropbox-client-alfred
https://github.com/fniephaus/alfred-dropbox/
http://www.packal.org/users/fniephaus
https://github.com/fniephaus/
http://www.packal.org/workflow/duden-search
https://github.com/deanishe/alfred-duden
http://www.packal.org/users/deanishe
https://github.com/deanishe/
http://www.packal.org/workflow/fabric-alfred
http://www.packal.org/users/fniephaus
http://www.packal.org/workflow/fakeum
https://github.com/deanishe/alfred-fakeum/releases
http://www.packal.org/users/deanishe
https://github.com/deanishe/
http://www.packal.org/workflow/forvo
https://github.com/owenwater/alfred-forvo
http://www.packal.org/users/owenwater
https://github.com/owenwater/
http://www.packal.org/workflow/fuzzy-folders
https://github.com/deanishe/alfred-fuzzyfolders
http://www.packal.org/users/deanishe
https://github.com/deanishe/
http://www.packal.org/workflow/genymotion
https://github.com/mrz1277/alfred-workflows/tree/master/net.yakiyama.alfred.genymotion
http://www.packal.org/users/yakiyama
https://github.com/mrz1277/
http://www.packal.org/workflow/git-repos
https://github.com/deanishe/alfred-repos
http://www.packal.org/users/deanishe
https://github.com/deanishe/
http://www.packal.org/workflow/glosbe-translation
http://www.packal.org/users/deanishe
http://www.packal.org/workflow/gmail-client-alfred
https://github.com/fniephaus/alfred-gmail
http://www.packal.org/users/fniephaus
https://github.com/fniephaus/
http://www.packal.org/workflow/google-drive
https://github.com/azai91/alfred-drive-workflow
http://www.packal.org/users/azai91
https://github.com/azai91/
http://www.packal.org/workflow/hackernews-alfred
https://github.com/fniephaus/alfred-hackernews
http://www.packal.org/users/fniephaus
https://github.com/fniephaus/
http://www.packal.org/workflow/hgnc-search
https://github.com/danielecook/HGNC-Search
http://www.packal.org/users/danielecook
https://github.com/danielecook/
http://www.packal.org/workflow/homebrew-and-cask-alfred
https://github.com/fniephaus/alfred-homebrew
http://www.packal.org/users/fniephaus
https://github.com/fniephaus/
http://www.packal.org/workflow/ime
https://github.com/owenwater/alfred-ime
http://www.packal.org/users/owenwater
https://github.com/owenwater/
http://www.packal.org/workflow/ios-simulator
https://github.com/jfro/ios-simulator-apps-alfred-workflow
http://www.packal.org/users/jfro
https://github.com/jfro/
http://www.packal.org/workflow/ipython-notebooks
https://github.com/nkeim/alfred-ipython-notebook
http://www.packal.org/users/nkeim
https://github.com/nkeim/
http://www.packal.org/workflow/jenkins
https://github.com/Amwam/Jenkins-Alfred-Workflow/
http://www.packal.org/users/amwam
https://github.com/Amwam/
http://www.packal.org/workflow/julian-date-calculator
https://github.com/Tam-Lin/julian_date
http://www.packal.org/users/tam-lin
https://github.com/Tam-Lin/
http://www.packal.org/workflow/ka-torrents
http://www.packal.org/users/hackademic
http://www.packal.org/workflow/laser-ssh
http://www.packal.org/users/paperelectron
http://www.packal.org/workflow/lastpass-vault-manager
https://github.com/bachya/lp-vault-manager
http://www.packal.org/users/bachya
https://github.com/bachya/
http://www.packal.org/workflow/libgen
https://github.com/smargh/alfred_libgen
http://www.packal.org/users/hackademic
https://github.com/smargh/
http://www.packal.org/workflow/mailto
https://github.com/deanishe/alfred-mailto
http://www.packal.org/users/deanishe
https://github.com/deanishe/
http://www.packal.org/workflow/movie-and-tv-show-search
https://github.com/tmcknight/Movie-and-TV-Show-Search-Alfred-Workflow
http://www.packal.org/users/tone
https://github.com/tmcknight/
http://www.packal.org/workflow/network-location
https://github.com/deanishe/alfred-network-location
http://www.packal.org/users/deanishe
https://github.com/deanishe/
http://www.packal.org/workflow/packal-workflow-search
https://github.com/deanishe/alfred-packal-search
http://www.packal.org/users/deanishe
https://github.com/deanishe/
http://www.packal.org/workflow/pandoctor
https://github.com/smargh/alfred_pandoctor
http://www.packal.org/users/hackademic
https://github.com/smargh/
http://www.packal.org/workflow/parsers
https://github.com/smargh/alfred_parsers
http://www.packal.org/users/hackademic
https://github.com/smargh/
http://www.packal.org/workflow/pass
https://github.com/MatthewWest/pass-alfred/
http://www.packal.org/users/mwest
https://github.com/MatthewWest/

Alfred-Workflow Documentation, Release 1.13

• Percent Change (GitHub repo) by bkmontgomery (on GitHub). Easily do percentage calculations.

• PHPStorm project opener (GitHub repo) by hansdubois (on GitHub). PHPStorm project opener.

• Pocket for Alfred (GitHub repo) by fniephaus (on GitHub). Manage your Pocket list with Alfred.

• Product Hunt (GitHub repo) by loris (on GitHub). List Product Hunt today’s hunts.

• ProductHunt (GitHub repo) by chiefy (on GitHub). Read ProductHunt in Alfred.

• PWS History (GitHub repo) by hrbrmstr (on GitHub). Retrieve personal weather station history from
Weather Underground.

• Quick Stocks by paperElectron. Add some stock symbols for Alfred to check for you.

• Ramda Docs (GitHub repo) by raine (on GitHub). Search Ramda documentation.

• Rates (GitHub repo) by Kennedy Oliveira (on GitHub). Simple exchange rates for alfred.

• Readability for Alfred (GitHub repo) by fniephaus (on GitHub). Manage your Readability list with Alfred.

• Reddit (GitHub repo) by deanishe (on GitHub). Browse Reddit from Alfred.

• Relative Dates (GitHub repo) by deanishe (on GitHub). Generate relative dates based on a simple input
format.

• Resolve URL (GitHub repo) by deanishe (on GitHub). Follows any HTTP redirects and returns the canoni-
cal URL. Also displays information about the primary host (hostname, IP address(es), aliases).

• Rotten Search (GitHub repo) by yakiyama (on GitHub). Search movie from RottenTomatoes.com.

• Search Omnifocus (GitHub repo) by rhyd (on GitHub). This is a workflow that performs free text searches
on OmniFocus data.

• Searchio! (GitHub repo) by deanishe (on GitHub). Auto-suggest search results from multiple search engines
and languages.

• Secure Password Generator (GitHub repo) by deanishe (on GitHub). Generate secure random passwords
from Alfred. Uses /dev/urandom as source of entropy.

• SEND by hackademic. Send documents to the cloud.

• Seq-utilies (GitHub repo) by danielecook (on GitHub). Fetch complement, reverse complement, RNA, and
protein sequences. Generate random DNA. Blast a sequence.

• Simple Timer by Paul Eunjae Lee. A very simple timer.

• Skimmer (GitHub repo) by hackademic (on GitHub). Actions for PDF viewer Skim.

• slackfred (GitHub repo) by frankspin (on GitHub). Interact with the chat service Slack via Alfred (multi-org
supported).

• Snippets (GitHub repo) by hackademic (on GitHub). Simple, document-specific text snippets.

• Spritzr (GitHub repo) by hackademic (on GitHub). An Alfred Speed-Reader.

• StackOverflow Search (GitHub repo) by deanishe (on GitHub). Search StackOverflow.com from Alfred.

• Sublime Text Projects (GitHub repo) by deanishe (on GitHub). View, filter and open your Sublime Text (2
and 3) project files.

• Torrent (GitHub repo) by bfw (on GitHub). Search for torrents, choose among the results in Alfred and start
the download in uTorrent.

• Travis CI for Alfred by fniephaus. Quickly check build statuses on travis-ci.org.

• UberTime (GitHub repo) by frankspin (on GitHub). Check estimated pick up time for Uber based on
inputted address.

• URL craft by takanabe. A workflow that transforms a url into new one that allows some formats such as
“Github Flavored Markdown link” or “shorten url” and so on.

• VagrantUP (GitHub repo) by m1keil (on GitHub). List and control Vagrant environments with Alfred2.

8.1. Workflows using Alfred-Workflow 95

http://www.packal.org/workflow/percent-change
https://github.com/bradmontgomery/alfred-percent-change
http://www.packal.org/users/bkmontgomery
https://github.com/bradmontgomery/
http://www.packal.org/workflow/phpstorm-project-opener
https://github.com/hansdubois/aflfred-phpstorm-opener
http://www.packal.org/users/hansdubois
https://github.com/hansdubois/
http://www.packal.org/workflow/pocket-alfred
https://github.com/fniephaus/alfred-pocket
http://www.packal.org/users/fniephaus
https://github.com/fniephaus/
http://www.packal.org/workflow/product-hunt
https://github.com/loris/alfred-producthunt-workflow
http://www.packal.org/users/loris
https://github.com/loris/
http://www.packal.org/workflow/producthunt
https://github.com/chiefy/ph-workflow
http://www.packal.org/users/chiefy
https://github.com/chiefy/
http://www.packal.org/workflow/pws-history
https://github.com/hrbrmstr/alfred-pws
http://www.packal.org/users/hrbrmstr
https://github.com/hrbrmstr/
http://www.packal.org/workflow/quick-stocks
http://www.packal.org/users/paperelectron
http://www.packal.org/workflow/ramda-docs
https://github.com/raine/alfred-ramda-workflow
http://www.packal.org/users/raine
https://github.com/raine/
http://www.packal.org/workflow/rates
https://github.com/kennedyoliveira/alfred-rates
http://www.packal.org/users/kennedy-oliveira
https://github.com/kennedyoliveira/
http://www.packal.org/workflow/readability-alfred
https://github.com/fniephaus/alfred-readability/
http://www.packal.org/users/fniephaus
https://github.com/fniephaus/
http://www.packal.org/workflow/reddit
https://github.com/deanishe/alfred-reddit
http://www.packal.org/users/deanishe
https://github.com/deanishe/
http://www.packal.org/workflow/relative-dates
https://github.com/deanishe/alfred-relative-dates
http://www.packal.org/users/deanishe
https://github.com/deanishe/
http://www.packal.org/workflow/resolve-url
https://github.com/deanishe/alfred-resolve-url
http://www.packal.org/users/deanishe
https://github.com/deanishe/
http://www.packal.org/workflow/rotten-search
https://github.com/mrz1277/alfred-workflows/tree/master/net.yakiyama.alfred.rotten
http://www.packal.org/users/yakiyama
https://github.com/mrz1277/
http://www.packal.org/workflow/search-omnifocus
https://github.com/rhydlewis/search-omnifocus
http://www.packal.org/users/rhyd
https://github.com/rhydlewis/
http://www.packal.org/workflow/searchio
https://github.com/deanishe/alfred-searchio
http://www.packal.org/users/deanishe
https://github.com/deanishe/
http://www.packal.org/workflow/secure-password-generator
https://github.com/deanishe/alfred-pwgen
http://www.packal.org/users/deanishe
https://github.com/deanishe/
http://www.packal.org/workflow/send
http://www.packal.org/users/hackademic
http://www.packal.org/workflow/seq-utilities
https://github.com/danielecook/seq-utilities
http://www.packal.org/users/danielecook
https://github.com/danielecook/
http://www.packal.org/workflow/simple-timer
http://www.packal.org/users/paul-eunjae-lee
http://www.packal.org/workflow/skimmer
https://github.com/smargh/alfred-Skimmer
http://www.packal.org/users/hackademic
https://github.com/smargh/
http://www.packal.org/workflow/slackfred
https://github.com/fspinillo/slackfred
http://www.packal.org/users/frankspin
https://github.com/fspinillo/
http://www.packal.org/workflow/snippets
https://github.com/smargh/alfred_snippets
http://www.packal.org/users/hackademic
https://github.com/smargh/
http://www.packal.org/workflow/spritzr
https://github.com/smargh/alfred_spritzr
http://www.packal.org/users/hackademic
https://github.com/smargh/
http://www.packal.org/workflow/stackoverflow-search
https://github.com/deanishe/alfred-stackoverflow
http://www.packal.org/users/deanishe
https://github.com/deanishe/
http://www.packal.org/workflow/sublime-text-projects
https://github.com/deanishe/alfred-sublime-text
http://www.packal.org/users/deanishe
https://github.com/deanishe/
http://www.packal.org/workflow/torrent
https://github.com/bfw/alfred-torrent
http://www.packal.org/users/bfw
https://github.com/bfw/
http://www.packal.org/workflow/travis-ci-alfred
http://www.packal.org/users/fniephaus
http://www.packal.org/workflow/ubertime
https://github.com/fspinillo/alfred-uber
http://www.packal.org/users/frankspin
https://github.com/fspinillo/
http://www.packal.org/workflow/url-craft
http://www.packal.org/users/takanabe
http://www.packal.org/workflow/vagrantup
https://github.com/m1keil/alfred-vagrant-workflow
http://www.packal.org/users/m1keil
https://github.com/m1keil/

Alfred-Workflow Documentation, Release 1.13

• VM Control (GitHub repo) by fniephaus (on GitHub). Control your Parallels and Virtual Box virtual ma-
chines.

• Wikify (GitHub repo) by hackademic (on GitHub). Your little Evernote Wiki-Helper.

• Workon Virtualenv (GitHub repo) by johnnycakes79 (on GitHub). Workflow to list and start python vir-
tualenvs (assumes you and have virtualenv and virtualenvwrapper installed).

• Wowhead (GitHub repo) by owenwater (on GitHub). An Alfred workflow that helps you search World of
Warcraft® database provided by wowhead.com.

• Wunderlist3.alfredworkflow (GitHub repo) by gnostic (on GitHub). A Wunderlist 3 API cloud-based alfred
workflow.

• Youdao Dict (GitHub repo) by WhyLiam (on GitHub). .

• ZotQuery (GitHub repo) by hackademic (on GitHub). Search Zotero. From the Comfort of Your Keyboard.

96 Chapter 8. Workflows using Alfred-Workflow

http://www.packal.org/workflow/vm-control
https://github.com/fniephaus/alfred-vmcontrol
http://www.packal.org/users/fniephaus
https://github.com/fniephaus/
http://www.packal.org/workflow/wikify
https://github.com/smargh/alfred_EN-Wikify
http://www.packal.org/users/hackademic
https://github.com/smargh/
http://www.packal.org/workflow/workon-virtualenv
https://github.com/johnnycakes79/alfred-workon-virtualenv
http://www.packal.org/users/johnnycakes79
https://github.com/johnnycakes79/
http://www.packal.org/workflow/wowhead
https://github.com/owenwater/alfred-wowhead
http://www.packal.org/users/owenwater
https://github.com/owenwater/
http://www.packal.org/workflow/wunderlist3alfredworkflow
https://github.com/camgnostic/Wunderlist-3-Alfred
http://www.packal.org/users/gnostic
https://github.com/camgnostic/
http://www.packal.org/workflow/youdao-dict
https://github.com/liszd/whyliam.workflows.youdao/releases
http://www.packal.org/users/whyliam
https://github.com/liszd/
http://www.packal.org/workflow/zotquery
https://github.com/smargh/alfred_zotquery
http://www.packal.org/users/hackademic
https://github.com/smargh/

CHAPTER 9

Feedback, questions, bugs, feature requests

If you have feedback or a question regarding Alfred-Workflow, please post in them in the Alfred forum thread.

If you have a bug report or a feature request, please create a new issue on GitHub.

You can also email me at deanishe@deanishe.net with any questions/feedback/bug reports. However, it’s generally
better to use the forum/GitHub so that other users can benefit from and contribute to the conversation.

97

http://www.alfredforum.com/topic/4031-workflow-library-for-python/
https://github.com/deanishe/alfred-workflow/issues
mailto:deanishe@deanishe.net

Alfred-Workflow Documentation, Release 1.13

98 Chapter 9. Feedback, questions, bugs, feature requests

Python Module Index

w
workflow, 60
workflow.background, 80
workflow.update, 81
workflow.web, 77
workflow.workflow, 62

99

Alfred-Workflow Documentation, Release 1.13

100 Python Module Index

Index

A
add_item() (workflow.workflow.Workflow method), 68
alfred_env (workflow.workflow.Workflow attribute), 68
args (workflow.workflow.Workflow attribute), 69
atomic_writer() (in module workflow.workflow), 77

B
build_api_url() (in module workflow.update), 81
bundleid (workflow.workflow.Workflow attribute), 69

C
cache_data() (workflow.workflow.Workflow method),

69
cache_serializer (workflow.workflow.Workflow at-

tribute), 69
cached_data() (workflow.workflow.Workflow method),

70
cached_data_age() (workflow.workflow.Workflow

method), 70
cached_data_fresh() (workflow.workflow.Workflow

method), 70
cachedir (workflow.workflow.Workflow attribute), 70
cachefile() (workflow.workflow.Workflow method), 70
check_update() (in module workflow.update), 82
check_update() (workflow.workflow.Workflow

method), 70
clear_cache() (workflow.workflow.Workflow method),

71
clear_data() (workflow.workflow.Workflow method),

71
clear_settings() (workflow.workflow.Workflow

method), 71
content (workflow.web.Response attribute), 79
CPickleSerializer (class in workflow.workflow), 84

D
data_serializer (workflow.workflow.Workflow at-

tribute), 71
datadir (workflow.workflow.Workflow attribute), 71
datafile() (workflow.workflow.Workflow method), 71
decode() (workflow.workflow.Workflow method), 71
delete_password() (workflow.workflow.Workflow

method), 72
download_workflow() (in module workflow.update), 82

dumbify_punctuation() (workflow.workflow.Workflow
method), 72

dump() (workflow.workflow.CPickleSerializer class
method), 84

dump() (workflow.workflow.JSONSerializer class
method), 83

dump() (workflow.workflow.PickleSerializer class
method), 84

E
encoding (workflow.web.Response attribute), 79

F
filter() (workflow.workflow.Workflow method), 72
first_run (workflow.workflow.Workflow attribute), 73
fold_to_ascii() (workflow.workflow.Workflow method),

73

G
get() (in module workflow.web), 78
get_password() (workflow.workflow.Workflow

method), 74
get_valid_releases() (in module workflow.update), 82

I
info (workflow.workflow.Workflow attribute), 74
install_update() (in module workflow.update), 82
is_running() (in module workflow.background), 81
item_class (workflow.workflow.Workflow attribute), 74
iter_content() (workflow.web.Response method), 79

J
json() (workflow.web.Response method), 79
JSONSerializer (class in workflow.workflow), 83

K
KeychainError (class in workflow.workflow), 77

L
last_version_run (workflow.workflow.Workflow at-

tribute), 74
load() (workflow.workflow.CPickleSerializer class

method), 84

101

Alfred-Workflow Documentation, Release 1.13

load() (workflow.workflow.JSONSerializer class
method), 83

load() (workflow.workflow.PickleSerializer class
method), 84

logfile (workflow.workflow.Workflow attribute), 74
logger (workflow.workflow.Workflow attribute), 74

M
magic_arguments (workflow.workflow.Workflow at-

tribute), 74
magic_prefix (workflow.workflow.Workflow attribute),

74
match_version() (workflow.update.Version method), 81

N
name (workflow.workflow.Workflow attribute), 74

O
open_cachedir() (workflow.workflow.Workflow

method), 74
open_datadir() (workflow.workflow.Workflow method),

74
open_help() (workflow.workflow.Workflow method),

74
open_log() (workflow.workflow.Workflow method), 75
open_terminal() (workflow.workflow.Workflow

method), 75
open_workflowdir() (workflow.workflow.Workflow

method), 75

P
PasswordExists (class in workflow.workflow), 77
PasswordNotFound (class in workflow.workflow), 77
PickleSerializer (class in workflow.workflow), 84
post() (in module workflow.web), 78

R
raise_for_status() (workflow.web.Response method),

79
register() (workflow.workflow.SerializerManager

method), 83
request() (in module workflow.web), 78
reset() (workflow.workflow.Workflow method), 75
Response (class in workflow.web), 79
run() (workflow.workflow.Workflow method), 75
run_in_background() (in module work-

flow.background), 80

S
save_password() (workflow.workflow.Workflow

method), 75
save_to_path() (workflow.web.Response method), 79
send_feedback() (workflow.workflow.Workflow

method), 75
serializer() (workflow.workflow.SerializerManager

method), 83
SerializerManager (class in workflow.workflow), 83

serializers (workflow.workflow.SerializerManager at-
tribute), 83

set_last_version() (workflow.workflow.Workflow
method), 75

settings (workflow.workflow.Workflow attribute), 75
settings_path (workflow.workflow.Workflow attribute),

75
start_update() (workflow.workflow.Workflow method),

75
store_data() (workflow.workflow.Workflow method),

76
stored_data() (workflow.workflow.Workflow method),

76

T
text (workflow.web.Response attribute), 79
tuple (workflow.update.Version attribute), 81

U
uninterruptible (class in workflow.workflow), 77
unregister() (workflow.workflow.SerializerManager

method), 83
update_available (workflow.workflow.Workflow

attribute), 76

V
Version (class in workflow.update), 81
version (workflow.workflow.Workflow attribute), 76

W
wf() (in module workflow.update), 82
Workflow (class in workflow.workflow), 67
workflow (module), 60, 67, 82
workflow.background (module), 80
workflow.update (module), 81
workflow.web (module), 77
workflow.workflow (module), 62, 67
workflowdir (workflow.workflow.Workflow attribute),

76
workflowfile() (workflow.workflow.Workflow method),

76

102 Index

	Features
	Quick example
	Installation
	Installation

	The Alfred-Workflow Tutorial
	Tutorial

	User Manual
	User Manual

	API documentation
	Alfred-Workflow API

	Script Filter results and the XML format
	Script Filter Results and the XML Format

	Workflows using Alfred-Workflow
	Workflows using Alfred-Workflow

	Feedback, questions, bugs, feature requests
	Python Module Index

